Skip to main content
Log in

The Effect of Concentration and pH of NaCl Solution on the Transport Properties of Anion Exchange Membranes with Different Fixed Groups

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The effect of pH and concentration of the NaCl solution on the exchange capacity and transport properties of the MA-40 and MA-41 anion-exchange heterogeneous membranes with different nature of fixed groups has been studied: MA-40 has weakly basic groups, and MA-41 has strongly basic groups with a small proportion of weakly basic ones. The exchange capacity, thickness, water content, and electrical conductivity of the membranes equilibrated with NaCl solutions of various concentrations and pH were measured; for the same solutions, the diffusion permeability coefficients were found. The capacity was measured in the pH range from 1.5 to 12; the remaining properties, in the pH range from 3 to 9. Using the values of electrical conductivity and diffusion permeability, the ion transport numbers in the membranes were calculated. It was shown that at the external solution pH 9 the thickness of the membranes and their electric conductivity are minimal, and the transport numbers of co-ions are maximum. This is explained by the fact that in basic solutions weakly basic functional groups are largely deprotonated, and the effective capacity of the membrane is significantly reduced. The maximum effective capacity is achieved at pH \( \leqslant \) 3; in this case, transport numbers of co-ions in the MA-40 membrane are 5-fold, and in the MA-41 membrane, two-fold lower than corresponding values at pH 6 and 9. The changes in the transport properties of the membranes with increasing pH are due to a decrease in the degree of protonation of weakly basic functional groups, these changes are more pronounced for the MA-40 membrane than for MA-41.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. P. Gnusin, V. I. Zabolotskii, V. V. Nikonenko, and A. I. Meshechkov, Zh. Fiz. Khim. 54, 1518 (1980).

    CAS  Google Scholar 

  2. N. P. Gnusin, N. P. Berezina, N. A. Kononenko, and O. A. Dyomina, J. Membr. Sci. 243, 301 (2004).

    Article  CAS  Google Scholar 

  3. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. N. D. Pismenskaya, E. I. Belova, V. V. Nikonenko, and C. Larchet, Russ. J. Electrochem. 44, 1285 (2008).

    Article  CAS  Google Scholar 

  5. V. K. Shahi, A. P. Murugesh, B. S. Makwana, et al., Indian J. Chem. A 39, 1264 (2000).

    Google Scholar 

  6. X. Tongwen and Y. Weihua, J. Membr. Sci. 190, 159 (2001).

    Article  Google Scholar 

  7. L. X. Tuan, J. Colloid Interface Sci. 325, 215 (2008).

    Article  CAS  Google Scholar 

  8. Y. Sedkaoui, A. Szymczyk, H. Lounici, and O. Arous, J. Membr. Sci. 507, 34 (2016).

    Article  CAS  Google Scholar 

  9. V. I. Zabolotsky and V. V. Nikonenko, J. Membr. Sci. 79, 181 (1993).

    Article  CAS  Google Scholar 

  10. F. Helfferich, Ionenaustauscher Bd. 1: Grundlagen Struktur-Herstellung-Theorie (Chemie, Weinheim, 1959).

  11. N. D. Pis’menskaya, Russ. J. Electrochem. 32, 252 (1996).

  12. G. Yu. Lopatkova, E. I. Volodina, N. D. Pis’menskaya, et al., Russ. J. Electrochem. 42, 847 (2006).

    Article  CAS  Google Scholar 

  13. V. I. Zabolotskii, S. V. Utin, N. V. Shel’deshov, K. A. Lebedev, P. A. Vasilenko, Russ. J. Electrochem. 47, 321 (2011).

    Article  CAS  Google Scholar 

  14. N. Kononenko, V. Nikonenko, D. Grande, et al., Adv. Colloid Interface Sci. 246, 196 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. T. K. Brutskus, E. V. Zambrovskaya, I. V. Sambrovskii, and A. B. Pashkov, Ion-Exchange Resins: A Catalogue (NIITEKhim, Cherkassy, 1975) [in Russian].

  16. J. Balster, I. Punt, D. F. Stamatialis, et al., J. Membr. Sci. 303, 213 (2007).

    Article  CAS  Google Scholar 

  17. V. Zabolotskii, N. Sheldeshov, and S. Melnikov, Desalination 342, 183 (2014).

    Article  CAS  Google Scholar 

  18. S. A. Loza, V. I. Zabolotsky, N. V. Loza, and M. A. Fomenko, Pet. Chem. 56, 1027 (2016).

    Article  CAS  Google Scholar 

  19. S. Mikhaylin, V. Nikonenko, G. Pourcelly, and L. Bazinet, Green Chem. 18, 307 (2016).

    Article  Google Scholar 

  20. V. Zabolotsky, S. Utin, A. Bespalov, and V. Strelkov, J. Membr. Sci. 494, 188 (2015).

    Article  CAS  Google Scholar 

  21. E. M. Akberova, Candidate’s Dissertation in Chemistry (Voronezh, 2015) [in Russian].

  22. O. A. Demina, N. P. Berezina, T. Sata, and A. V. Demin, Russ. J. Electrochem 38, 896 (2002).

    Article  CAS  Google Scholar 

  23. V. I. Vasil’eva, N. D. Pismenskaya, E. M. Akberova, and K. A. Nebavskaya, Russ. J. Phys. Chem. 88, 1293 (2014).

    Article  CAS  Google Scholar 

  24. V. D. Grebenyuk and A. A. Mazo, Desalination of Water with Ion-Exchange Resins (Khimiya, Moscow, 1980) [in Russian].

    Google Scholar 

  25. E. E. Nevakshenova, Candidate’s Dissertation in Chemistry (Krasnodar, 2013) [in Russian].

  26. Ion-Exchange Resin Membranes, Granulates, and Powders: A Catalogue (NIITEKhim, Moscow, 1977) [in Russian]..

  27. E. M. Akberova and M. D. Malykhin, Sorb. Khromatogr. Protsess. 14, 232 (2014).

    CAS  Google Scholar 

  28. G. Merle, M. Wessling, and K. Nijmeijer, J. Membr. Sci. 377, 1 (2011).

    Article  CAS  Google Scholar 

  29. N. N. Belaid, L. Dammak, B. Ngom, et al., Eur. Polym. J. 34, 564 (1998).

    Google Scholar 

  30. L. V. Karpenko, O. A. Demina, G. A. Dvorkina, et al., Russ. J. Electrochem. 37, 287 (2001).

    Article  CAS  Google Scholar 

  31. V. V. Nikonenko, RU Patent No. 2010121195 (2010).

  32. N. P. Gnusin, N. P. Berezina, A. A. Shudrenko, and O. P. Ivina, Zh. Fiz. Khim. 68, 565 (1994).

    CAS  Google Scholar 

  33. V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  34. C. Larchet, L. Dammak, B. Auclair, et al., New J. Chem. 28, 1260 (2004).

    Article  CAS  Google Scholar 

  35. S. A. Lawrence, Amines: Synthesis, Properties and Applications (Cambridge University Press, Cambridge, 2004).

    Google Scholar 

  36. L. Franck-Lacaze, P. Sistat, P. Huguet, and F. Lapicque, J. Membr. Sci. 340, 257 (2009).

    Article  CAS  Google Scholar 

  37. V. Sarapulova, E. Nevakshenova, N. Pismenskaya, et al., J. Membr. Sci. 479, 28 (2015).

    Article  CAS  Google Scholar 

  38. B. B. Damaskin, O. A. Petrii, and G. A. Tsirlina, Textbook of Electrochemistry (Khimiya, Moscow, 2001) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Professor N.V. Shel’deshov for valuable advice and useful discussions. The work was supported by the Russian Science Foundation, project no. 17-19-014-86.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Zyryanova.

Additional information

Translated by V. Makhaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyryanova, S.V., Pismenskaya, N.D. & Nikonenko, V.V. The Effect of Concentration and pH of NaCl Solution on the Transport Properties of Anion Exchange Membranes with Different Fixed Groups. Pet. Chem. 58, 965–974 (2018). https://doi.org/10.1134/S0965544118110087

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118110087

Keywords:

Navigation