Skip to main content
Log in

A fuel cell model in biological energy conversion

  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Consideration of the high energy conversion efficiency of biological systems leads to the idea that mechanical energy may arise via a series of steps, of which a rate-determining one occurs in a fuel-cell-like element. The mitochondrion is suggested as the site of such entities. The observed efficiency would be consistent with a potential loss of about 0.5 V. The supposed biological fuel cells would be able to act as an electrical power source, driving chemical reactions against their spontaneous direction.

Considerations of electrical conductance in wet proteins shows that ohmic (i.e., non-interfacial) potential differences through mitochondrial membranes could be negligible. The cathodic reaction would be the reduction of oxygen, O2+4H++4e→H2O and the anodic reaction, 2NADH+→2NAD+2H++4e. The anodes are suggested as being molecular, buried in the invaginations of the inner membrane forming the cristae. The cathodes are located on enzymes which are probably on the inner side of the membrane but could be, respectively, on the outer (cathodic), and the inner (anodic) sides. The electron transport occurs though proteins within each membrane. The relation of the so-called fuel cell potentials to potentially observable membrane potentials, and those measured by fluorescent probes, are discussed.

The fuel cells produce electrical energy and this energy is transferred to ADP by an electrolytic route, using electric power from the cells to work the endergonic ATP synthesis. Possible electrode reactions are suggested. An exponential dependence of the rate of ATP synthesis upon applied potential has been observed.

Biological cells radiate electromagnetically in the 109 to 1015 Hz region. Such phenomena support a fuel cell model of a biological cell because they demand the presence of mobile electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkins, P.W. 1978.Physical Chemistry, Freeman & Co., San Franciso, p. 585.

    Google Scholar 

  • Bethe, A.; Toropoff, Z. 1914.Z. Phys. Chem. 86, 686.

    Google Scholar 

  • Bockris, J. O'M.; Srinivasan, S. 1967.Nature 215, 197.

    Google Scholar 

  • Bockris, J. O'M. 1969.Nature 224, 775.

    Google Scholar 

  • Bockris, J. O'M.; Tunnulli, M.S. 1979.J. Electroanal. Chem. 100, 7.

    Google Scholar 

  • Cheung, R.K. 1982.J. Cell. Physiol. 112, 189.

    Google Scholar 

  • Cope, F.W. 1966.Bull. Math. Biophys. 27, 237.

    Google Scholar 

  • Davydov, A.S. 1979.Int. J. Quantum Chem. 16, 5.

    Google Scholar 

  • Del Duca, F.G.; Fuscoe, J.M. 1965.Internat. Sci. Techn. No. 39, 56.

    Google Scholar 

  • Digby, P.S.B. 1965.Proc. Roy. Soc. (London), B161, 490.

    Google Scholar 

  • Fortes, P.A.G. 1976. InMitochondria: Bioenergetics, Biogenesis and Membrane Structure (L. Packer and A. Gomez-Puyou, Eds.), Academic Press, New York, p. 327.

    Google Scholar 

  • Fröhlich, H. 1984. InModern Bioelectrochemistry (F. Gutmann and H. Keyzer, Eds.), Plenum Press, New York.

    Google Scholar 

  • Gascoyne, P.R.C.; Pethig, R.; Szent-Gyorgyi, A. 1981.Proc. Nat. Acad. Sci. U.S.A. 76, 261.

    Google Scholar 

  • Gutmann, F.; Lyons, L.E. 1967.Organic Semiconductors, Wiley, New York, p. 300.

    Google Scholar 

  • Habib, M.A.; Bockris, J. O'M. 1984.J. Bioelectricity 3, 247.

    Google Scholar 

  • Hofmann, R. 1983.Int. Conf. Conduct. Breakdown Solid Dielect. 1, 71.

    Google Scholar 

  • Imry, Y. 1983.J. Phys. C 16, 3501.

    Google Scholar 

  • Ivanov, I.I. 1982.Biofizika 27, 326;Chem. Abstr. 96, 212849.

    Google Scholar 

  • Kimura, K. 1979.J. Chem. Phys. 70, 3317.

    Google Scholar 

  • Lohmann, F.; Mehl, W. 1968.Electrochim. Acta 13, 1469.

    Google Scholar 

  • Loewenhaupt, B. 1969.J. Theor. Biol. 25, 187.

    Google Scholar 

  • Lund, E.J. 1928.J. Exp. Zool. 51, 265.

    Google Scholar 

  • Lundegardh, H. 1939.Nature 143, 203.

    Google Scholar 

  • Milligan, G.; Strange, P.G. 1983.Biochim. Biophys. Acta 762, 585.

    Google Scholar 

  • Mitchell, P. 1961.Nature (London) 191, 144.

    Google Scholar 

  • Mitchell, P. 1966.Biol. Rev. Cambridge Philos. Soc. 41, 445.

    Google Scholar 

  • Morgenstern, E. 1979. InElectromagnetic Bioinformation (Popp, F.A., Becker, G., Konig, H.L., Peschka, W., Eds.), Urban-Schwarzenberg, Munich, p. 62.

    Google Scholar 

  • Munn, E.A. 1974.The Structure of Mitochondria, Academic Press, London, New York, pp. 21–26.

    Google Scholar 

  • Nichols, D.G.; Bernson, V.S.M. 1977.Eur. J. Biochem. 75, 601.

    Google Scholar 

  • Nichols, D.G. 1979.Biochim. Biophys. Acta 549, 1.

    PubMed  Google Scholar 

  • Ovadyahu, Z. 1983.J. Phys. C 16, L845.

    Google Scholar 

  • Ovadyahu, Z.; Imry, Y. 1983.J. Phys. C 16, L-471.

    Google Scholar 

  • Pethig, R. 1973.J. Biol. Phys. 1, 193.

    Google Scholar 

  • Pohl, H.A.; Sauer, J.R. 1978.J. Biol. Phys. 6, 118.

    Google Scholar 

  • Pope, M.; Kallman, H. 1961.Electrical Conductivity in Organic Solids, Wiley, New York, p. 83.

    Google Scholar 

  • Popp, F.A.; Becker, G.; Konig, H.L.; Peschka, W., Eds. 1979.Electromagnetic Bioinformation, Urban-Schwarzenberg, Munich.

    Google Scholar 

  • Racker, E. 1976.A New Look at Mechanisms in Bioenergetics. Academic Press, New York.

    Google Scholar 

  • Rottenberg, H. 1978.Biochim. Biophys. Acta 549, 225.

    Google Scholar 

  • Ruth, B. 1979. InElectromagnetic Bioinformation (Popp, F.A.; Becker, G.; Konig, H.L.; Peschka, W., Eds.), Urban-Schwarzenberg, Munich, p. 110.

    Google Scholar 

  • Szent-Györgyi, A. 1041.Nature 148, 157.

    Google Scholar 

  • Tien, H.T.; Karvaly, B.; Shieh, P.K. 1972.J. Colloid Interfac. Sci. 62, 185.

    Google Scholar 

  • Tsong, T.Y. 1984.J. Biol. Chem. 259, 4757.

    Google Scholar 

  • Webb, S. 1980.Phys. Rep. 60, 201.

    Google Scholar 

  • Williams, R.J.P. 1961.J. Theo. Biol. 1, 1.

    Google Scholar 

  • Williams, R.J.P. 1978.Biochim. Biophys. Acta 505, 1.

    PubMed  Google Scholar 

  • Zimmermann, U. 1982.Biochim. Biophys. Acta 694, 227.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bockris, J.O., Gutmann, F. & Habib, M.A. A fuel cell model in biological energy conversion. J Biol Phys 13, 3–12 (1985). https://doi.org/10.1007/BF01872876

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872876

Keywords

Navigation