Skip to main content
Log in

Differential effects of aldosterone and ADH on intracellular electrolytes in the toad urinary bladder epithelium

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Quantitative electron microprobe analysis was employed to compare the effects of aldosterone and ADH on the intracellular electrolyte concentrations in the toad urinary bladder epithelium. The measurements were performed on thin freeze-dried cryosections utilizing energy dispersive x-ray microanalysis. After aldosterone, a statistically significant increase in the intracellular Na concentration was detectable in 8 out of 9 experiments. The mean Na concentration of granular cells increased from 8.9±1.3 to 13.2±2.2 mmol/kg wet wt. A significantly larger Na increase was observed after an equivalent stimulation of transepithelial Na transport by ADH. On average, the Na concentration in granular cells increased from 12.0±2.3 to 31.4±9.3 mmol/kg wet wt (5 experiments). We conclude from these results that aldosterone, in addition to its stimulatory effect on the apical Na influx, also exerts a stimulatory effect on the Na pump. Based on a significant reduction in the Cl concentration of granular cells, we discuss the possibility that the stimulation of the pump is mediated by an aldosterone-induced alkalinization.

Similar though less pronounced concentration changes were observed in basal cells, suggesting that this cell type also participates in transepithelial Na transport. Measurements in mitochondria-rich cells provided no consistent results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, R., Rick, R. 1978. Computer analysis of X-ray spectra (EDS) from thin biological specimens.X-Ray Spectrom. 7:63–69

    Google Scholar 

  • Beck, F.-X., Dörge, A., Rick, R., Schramm, M., Thurau, K. 1982. Intracellular element concentrations of renal tubular cells during acute metabolic alkalosis.Pfluegers Arch. 394:R23

    Google Scholar 

  • Crabbé, J., De Weer, P. 1969. Relevance of sodium transport pool measurements in toad bladder tissue for the elucidation of the mechanism whereby hormones stimulate active sodium transport.Pfluegers Arch. 313:197–221

    Google Scholar 

  • Dörge, A., Rick, R., Gehring, K., Thurau, K. 1978. Preparation of freeze-dried cryosections for quantitative X-ray microanalysis of electrolytes in biological soft tissues.Pfluegers Arch. 373:85–97

    Google Scholar 

  • Doucet, A., Katz, A. 1981. Short-term effect of aldosterone on Na-K-ATPase in single nephron segments.Am. J. Physiol. 241:F273-F278

    Google Scholar 

  • Eaton, D.C. 1981. Intracellular sodium ion activity and sodium transport in rabbit urinary bladder.J. Physiol. (London) 316:527–544

    Google Scholar 

  • Eaton, D.C., Hamilton, K.L., Johnson, K.E. 1984. Intracellular acidosis blocks the basolateral Na−K pump in rabbit urinary bladder.Am. J. Physiol. 247:F946-F954

    Google Scholar 

  • Edelman, I.S., Bogoroch, R., Porter, G.A. 1963. On the mechanism of action of aldosterone on sodium transport: The role of protein synthesis.Proc. Natl. Acad. Sci. USA 50:1169–1177

    Google Scholar 

  • Fanestil, D.D., Park, C.S. 1981. Steroid hormones and the kidney.Annu. Rev. Physiol. 43:637–649

    Google Scholar 

  • Frizzell, R.A., Schultz, S.G. 1978. Effect of aldosterone on ion transport by rabbit colonin vitro.J. Membrane Biol. 39:1–26

    Google Scholar 

  • Garty, H. 1986. Mechanisms of aldosterone action in tight epithelia.J. Membrane Biol. 90:193–205

    Google Scholar 

  • Garty, H., Civan, E.D., Civan, M.M. 1985. Effects of internal and external pH on amiloride-blockable Na+ transport across toad urinary bladder vesicles.J. Membrane Biol. 87:67–75

    Google Scholar 

  • Garty, H., Edelman, I.S., Lindemann, B. 1983. Metabolic regulation of apical sodium permeability in toad urinary bladder in the presence and absence of aldosterone.J. Membrane Biol. 74:15–24

    Google Scholar 

  • Geering, K., Girardet, M., Bron, C., Kraehenbühl, J.P., Rossier, B.C. 1982. Hormonal regulation of (Na+, K+)-ATPase biosynthesis in the toad bladder. Effect of aldosterone and 3,5,3′-triiodo-1-thyronine.J. Biol. Chem. 257:10338–10343

    Google Scholar 

  • Halm, D.R., Dawson, D.C. 1985. Aldosterone does not stimulate the Na∶K pump in isolated turtle colon.Pfluegers Arch. 403:236–239

    Google Scholar 

  • Handler, J.S., Preston, A.S., Orloff, J. 1969. Effect of the adrenal steroid hormones on the response of the toad's urinary bladder to vasopressin.J. Clin. Invest. 48:823–833

    Google Scholar 

  • Handler, J.S., Preston, A.S., Orloff, J. 1972. Effect of ADH, aldosterone, ouabain and amiloride on toad bladder epithelial cells.Am. J. Physiol. 222:1071–1074

    Google Scholar 

  • Kirsten, E., Kirsten, R., Leaf, A., Sharp, G.W.G. 1968. Increased activity of enzymes of the tricarboxylic acid cycle in response to aldosterone in the toad bladder.Pfluegers Arch. 300:213–225

    Google Scholar 

  • Lewis, S.A., Eaton, D.C., Diamond, J.M. 1976. The mechanism of Na+ transport by rabbit urinary bladder.J. Membrane Biol. 28:41–70

    Google Scholar 

  • Lewis, S.A., Wills, N.K. 1983. Apical membrane permeability and kinetic properties of the sodium pump in rabbit urinary bladder.J. Physiol. (London) 341:169–184

    Google Scholar 

  • Li, J.H.-Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  • Lipton, P., Edelman, I.S. 1971. Effects of aldosterone and vasopressin on electrolytes of toad bladder epithelial cells.Am. J. Physiol. 221:733–741

    Google Scholar 

  • Mandel, L.J. 1978. Effects of pH, Ca, ADH and theophylline on kinetics of Na entry in frog skin.Am. J. Physiol. 235:C35-C48

    Google Scholar 

  • Nagel, W., Crabbé, J. 1980. Mechanism of action of aldosterone on active sodium transport across toad skin.Pfluegers Arch. 385:181–187

    Google Scholar 

  • Oberleithner, H., Weigt, M., Westphale, H.-J., Wang, W. 1987. Aldosterone activates Na+/H+ exchange and raises cytoplasmatic pH in target cells of the amphibian kidney.Proc. Natl. Acad. Sci. USA 84:1464–1468

    Google Scholar 

  • Palmer, L.G. 1985. Modulation of apical Na permeability of the toad urinary bladder by intracellular Na, Ca, and H.J. Membrane Biol. 83:57–69

    Google Scholar 

  • Palmer, L.G., Li, J.H.-Y., Lindemann, B., Edelman, I.S. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder.J. Membrane Biol. 64:91–102

    Google Scholar 

  • Petty, K., Kokko, J., Marver, D. 1981. Secondary effect of aldosterone on Na∶K ATPase activity in the rabbit cortical collecting tubule.J. Clin. Invest. 68:1514–1521

    Google Scholar 

  • Rick, R., Beck, F.X., Dörge, A., Thurau, K. 1985. Cl transport in the frog cornea: An electron microprobe analysis.J. Membrane Biol. 83:235–250

    Google Scholar 

  • Rick, R., DiBona, D.R. 1987. Intracellular solute gradients during osmotic water flow: An electron-microprobe analysis.J. Membrane Biol. 96:85–94

    Google Scholar 

  • Rick, R., Dörge, A., Macknight, A.D.C., Leaf, A., Thurau, K. 1978. Electron microprobe analysis of the different epithelial cells of toad urinary bladder: Electrolyte concentrations at different functional states of transepithelial sodium transport.J. Membrane Biol. 39:257–271

    Google Scholar 

  • Rick, R., Dörge, A., Thurau, K. 1982. Quantitative analysis of electrolytes in frozen dried sections.J. Microsc. (Oxford) 125:239–247

    Google Scholar 

  • Rick, R., Roloff, C., Dörge, A., Beck, F.X., Thurau, K. 1984. Intracellular electrolyte concentrations in the frog skin epithelium: Effect of vasopressin and dependence on the Na concentration in the bathing media.J. Membrane Biol. 78:129–145

    Google Scholar 

  • Sharp, G., Leaf, A. 1966. Mechanism of action of aldosterone.Physiol. Rev. 46:593–633

    Google Scholar 

  • Spancken, G., Rick, R., Dörge, A. 1985. The action of aldosterone on the sodium transport in the toad urinary bladder.Pfluegers Arch. 403:R23

    Google Scholar 

  • Wills, N.K., Lewis, S.A. 1980. Intracellular Na+ activity as a function of Na+ transport across a tight epithelium.Biophys. J. 30:181–186

    Google Scholar 

  • Austin, W.H., Lacombe, E., Rand, P.W., Chatterjee, M. 1963. Solubility of carbon dioxide in serum from 15 to 38 C.J. Appl. Physiol. 18:301–304

    Google Scholar 

  • Boron, W.F., Boulpaep, E. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander.J. Gen. Physiol. 81:53–94

    Google Scholar 

  • Boron, W.F., DeWeer, P. 1976. Intracellular pH transients in squid giant axons caused by CO2, NH3 and metabolic inhibitors.J. Gen. Physiol. 67:91–112

    Google Scholar 

  • Case, R.M., Conigrave, A.D., Favaloro, E.J., Novak, I., Thompson, C.H., Young, J.A. 1982. The role of buffer anions and protons in secretion by the rabbit mandibular salivary gland.J. Physiol. (London) 322:273–286

    Google Scholar 

  • Cho, A.K., Curry, S.H., Jacobsen, S. 1969. Localization of basic drugs in the submaxillary gland,Biochem. Pharmacol. 18:2323–2330

    Google Scholar 

  • Eaton, D.C., Hamilton, K.L., Johnson, K.E. 1984. Intracellular acidosis blocks the basolateral Na−K pump in rabbit urinary bladder.Am. J. Physiol. 247:F946-F954

    Google Scholar 

  • Findlay, I., Petersen, O.H. 1985. Acetylcholine stimulates a Ca2+-dependent Cl conductance in mouse lacrimal acinar cells.Pfluegers Arch. 403:65–68

    Google Scholar 

  • Grinstein, S., Rothstein, A. 1986 Mechanisms of regulation of the Na+/H+ exchanger.J. Membrane Biol. 90:1–12

    Google Scholar 

  • Hellmessen, W., Christian, A.L., Fasold, H., Schulz, I. 1985. Coupled Na+−H+ exchange in isolated acinar cells from rat exocrine pancreas.Am. J. Physiol. 249:G125-G136

    Google Scholar 

  • Henniger, R.A., Schulte, B.A., Spicer, S.S. 1983. Immunolocalization of carbonic anhydrase isozymes in rat and mouse salivary and exorbital lacrimal glands.Anat. Rec. 207:605–614

    Google Scholar 

  • Herzog, V., Sies, H., Miller, F. 1976. Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation.J. Cell Biol. 70:692–706

    Google Scholar 

  • Jentsch, T.J., Keller, S.K., Koch, M., Wiederholt, M. 1984. Evidence for coupled transport of bicarbonate and sodium in cultured bovine corneal endothelial cells.J. Membrane Biol. 81:189–204

    Google Scholar 

  • Marty, A., Tan, Y.P., Trautmann, A. 1984. Three types of calcium-dependent channel in rat lacrimal glands.J. Physiol. (London) 357:293–325

    Google Scholar 

  • Murakami, M., Imai, Y., Seo, Y., Morimoto, T., Shiga, K., Watari, H. 1983. Phosphorus nuclear magnetic resonance of perfused salivary gland.Biochim. Biophys. Acta 762:19–24

    Google Scholar 

  • Novak, I., Young, J.A. 1986. Two independent anion transport systems in rabbit mandibular salivary glands.Pfluegers Arch. 407:649–656

    Google Scholar 

  • Parod, R.J., Putney, J.W., Jr. 1980. Stimulus-permeability coupling in rat lacrimal gland.Am. J. Physiol. 239:G106-G113

    Google Scholar 

  • Pirani, D., Evans, L.A.R., Cook, D.I., Young, J.A. 1987. Intracellular pH in the rat mandibular salivary gland: The role of Na−H and Cl−HCO3 antiports in secretion.Pfluegers Arch. 408:178–184

    Google Scholar 

  • Putney, J.W., Jr., Borzelleca, J.F. 1971a. On the mechanisms of14C-salicylic acid distribution in rat submaxillary gland in vitro.J. Pharmacol. Exp. Ther. 177:263–275

    Google Scholar 

  • Putney, J.W., Jr., Borzelleca, J.F. 1971b. On the mechanism of14C-nicotine distribution in rat submaxillary gland in vitro.J. Pharmacol. Exp. Ther. 178:180–191

    Google Scholar 

  • Roos, A., Boron, W.F. 1981. Intracellular pH.Physiol. Rev. 61:296–434

    Google Scholar 

  • Saito, Y., Ozawa, T., Hayashi H., Nishiyama, A. 1985. Acetylcholine-induced change in intracellular Cl activity of the mouse lacrimal acinar cells.Pfluegers Arch. 405:108–111

    Google Scholar 

  • Saito, Y., Ozawa, T., Hayashi, H., Nishiyama, A. 1987a. The effect of acetylcholine on chloride transport across the mouse lacrimal gland acinar cell membranes.Pfluegers Arch. 409:280–288

    Google Scholar 

  • Saito, Y., Ozawa, T., Nishiyama, A. 1986. Transcellular chloride transport by acinar cells of the mouse lacrimal gland.Proc. Int. Union Physiol. Sci. 16:480

    Google Scholar 

  • Saito, Y., Ozawa, T., Nishiyama, A. 1987b. Acetylcholine-induced Na+ influx in the mouse lacrimal gland acinar cells: Demonstration of multiple Na+ transport mechanisms by intracellular Na+ activity measurements.J. Membrane Biol. 98:135–144

    Google Scholar 

  • Saito, Y., Ozawa, T., Suzuki, S., Nishiyama, A. 1987c. Regulation of intracellular pH of the mouse lacrimal gland acinar cells.J. Physiol. Soc. Jpn. 49:345

    Google Scholar 

  • Suzuki, K., Petersen, O.H. 1985. The effect of Na+ and Cl removal and of loop diuretics on acetylcholine-evoked membrane potential changes in mouse lacrimal acinar cells.Q. J. Exp. Physiol. 70:437–445

    Google Scholar 

  • Thomas, R.C. 1974. Intracellular pH of snail neurones measured with a new pH-sensitive glass micro-electrode.J. Physiol. (London) 238:159–180

    Google Scholar 

  • Thomas, R.C. 1976. The effect of carbon dioxide on the intracellular pH buffering power of snail neurones.J. Physiol. (London) 255:715–735

    Google Scholar 

  • Weinman, S.A., Reuss, L. 1982. Na+−H+ exchange of the apical membrane ofNecturus gallbladder. Extracellular and intracellular pH studies.J. Gen. Physiol. 80:299–321

    Google Scholar 

  • Wood, R.L., Mircheff, A.K. 1986. Apical and basal-lateral Na/K ATPase in rat lacrimal gland acinar cells.Invest. Ophthalmol. Vis. Sci. 27:1293–1296

    Google Scholar 

  • Wright, E.M. 1977. Effect of bicarbonate and other buffers on choroid plexus Na+/K+ pump,Biochim. Biophys. Acta 468:486–489

    Google Scholar 

  • Yoshitomi, K., Burckhardt, B.-C., Fromter, E. 1985. Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule.Pfluegers Arch. 405:360–366

    Google Scholar 

  • Zeuthen, T. 1980. How to make and use double-barreled ion selective microelectrodes.In: Current Topics in Membrane and Transport E.L. Boulpaep, editor, Vol. 13, pp. 31–47 Academic, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rick, R., Spancken, G. & Dörge, A. Differential effects of aldosterone and ADH on intracellular electrolytes in the toad urinary bladder epithelium. J. Membrain Biol. 101, 275–282 (1988). https://doi.org/10.1007/BF01872842

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872842

Key Words

Navigation