Skip to main content
Log in

Fused cells of frog proximal tubule: II. Voltage-dependent intracellular pH

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Experiments were performed in intact proximal tubules of the doubly perfused kidney and in fused proximal tubule cells ofRaha esculenta to evaluate the dependence of intracellular pH (pHi) on cell membrane potential applying pH-sensitive and conventional microelectrodes. In proximal tubules an increase of the K concentration in the peritubular perfusate from 3 to 15 mmol/liter decreased the peritubular cell membrane potential from −55±2 to −38±1 mV paralleled by an increase of pH i , from 7.54±0.02 to 7.66±0.02. The stilbene derivative DIDS hyperpolarized the cell membrane potential from −57 ± 2 to −71 ±4 mV and led to a significant increase of the K-induced cell membrane depolarization, but prevented the K-induced intracellular alkalinization. Fused proximal tubule cells were impaled by three microelectrodes simultaneously and cell voltage was clamped stepwise while pH i changes were monitored. Cell membrane hyperpolarization acidified the cell cytoplasm in a linear relationship. This voltage-induced intracellular acidification was reduced to about one-third when HCO3 ions were omitted from the extracellular medium. We conclude that in proximal tubule cells pH i depends on cell voltage due to the rheogenicity of the HCO 3 transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alpern, R.J. 1985. Mechanism of basolateral membrane H+/OH/HCO 3 transport in the rat proximal tubule.J. Gen. Physiol. 86:613–636

    Google Scholar 

  2. Ammann, D., Lanter, F., Steiner, R.A., Schultess, P., Shijo, Y., Simon, W. 1981. Neutral carrier based hydrogen ion selective microelectrode for extra and intracellular studies.Anal. Chem. 53:2267–2269

    Google Scholar 

  3. Aronson, P.S., Nee, J., Suhm, M.A. 1982. Modifier role of internal H+ in activating the Na+−H+ exchanger in renal microvillus membrane vesicles.Nature (London) 299:161–163

    Google Scholar 

  4. Biagi, B.A. 1985. Effects of the anion transport inhibitor, SITS, on the proximal straight tubule of the rabbit perfusedin vitro.J. Membrane Biol. 88:25–31

    Google Scholar 

  5. Biagi, B.A., Sohtell, M. 1986. Electrophysiology of basolateral bicarbonate transport in the rabbit proximal tubule.Am. J. Physiol. 250:F267-F272

    Google Scholar 

  6. Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander: Na−H exchange.J. Gen. Physiol. 81:29–52

    Google Scholar 

  7. Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander: Basolateral HCO 3 transport.J. Gen. Physiol. 81:53–94

    Google Scholar 

  8. Brisalla-Diuana, A., Amorena, C., Malnic, G. 1986. Transfer of base across the basolateral membrane of cortical tubules of rat kidney.Pfluegers Arch. 405:209–215

    Google Scholar 

  9. Burckhardt, B.C., Frömter, E. 1987. Evidence for OH/H+ permeation across the peritubular cell membrane of rat renal proximal tubule in HCO 3 -free solutions.Pfluegers Arch. 409:132–137

    Google Scholar 

  10. Chantrelle, B., Cogan, M.G., Rector, F.C., Jr. 1982. Evidence for coupled sodium/hydrogen exchange in the rat superficial proximal convoluted tubule.Pfluegers Arch. 395:186–189

    Google Scholar 

  11. Dietl, P., Wang, W., Oberleithner, H. 1987. Fused cells of frog proximal tubule: I. Basic membrane properties.J. Membrane Biol. 100:43–51

    Google Scholar 

  12. Frömter, E. 1984. Viewing the kidney through microelectrodes.Am. J. Physiol. 247:F695-F705

    Google Scholar 

  13. Guggino, W.B., London, R., Boulpaep, E.L., Giebisch, G. 1983. Chloride transport across the basolateral cell membrane of theNecturus proximal tubule: Dependence on bicarbonate and sodium.J. Membrane Biol. 71:227–240

    Google Scholar 

  14. Lang, F., Messner, G., Rehwald, W. 1986. Electrophysiology of sodium-coupled transport in proximal renal tubules.Am. J. Physiol. 250:F953-F962

    Google Scholar 

  15. Matsumura, Y., Cohen, B., Guggino, W.B., Giebisch, G. 1984. Electrical effects of potassium and bicarbonate on proximal tubule cells ofNecturus.J. Membrane Biol. 79:145–152

    Google Scholar 

  16. Meech, R.W., Thomas, R.C. 1987. Voltage-dependent intracellular pH inHelix aspersa neurones.J. Physiol. (London) (in press)

  17. Messner, G., Wang, W. Paulmichl, M., Oberleithner, H., Lang, F. 1985. Ouabain decreases apparent potassium-conductance in proximal tubules of the amphibian kidney.Pfluegers Arch. 404:131–137

    Google Scholar 

  18. Oberleithner, H., Gassner, B., Dietl, P. Wang, W. 1988. Amphibian nephron: Isolated kidney and cell fusion.Methods Enzymol. (in press)

  19. Oberleithner, H., Lang, F., Messner, G., Wang, W. 1984. Mechanism of hydrogen ion transport in the diluting segment of frog kidney.Pfluegers Arch. 402:272–280

    Google Scholar 

  20. Oberleithner, H., Weigt, M., Westphale, H.J., Wang, W. 1987. Aldosterone activates Na+/H+ exchange and raises cytoplasmic pH in target cells of the amphibian kidney.Proc. Natl. Acad. Sci. USA 84:1464–1468

    Google Scholar 

  21. Rector, F.C., Jr. 1983. Sodium, bicarbonate, and chloride absorption by the proximal tubule.Am. J. Physiol. 244:F461-F471

    Google Scholar 

  22. Thomas, R.C., Meech, R.W. 1982. Hydrogen ion currents and intracellular pH in depolarized voltage-clamped snail neurons.Nature (London) 299:826–828

    Google Scholar 

  23. Wang, K.W., Deen, W.M. 1980. Chemical, kinetic and diffusional limitations on bicarbonate reabsorption by the proximal tubule.Biophys. J. 31:161–182

    Google Scholar 

  24. Wang, W., Dietl, P., Oberleithner, H. 1987. Evidence for Na+ dependent rheogenic HCO 3 transport in fused cells of frog distal tubules.Pfluegers Arch. 408:291–299

    Google Scholar 

  25. Wang, W., Dietl, P., Oberleithner, H. 1987. Cell membrane potential: A signal to control intracellular pH and transepithelial hydrogen ion secretion in frog kidney.Pfluegers Arch. 409:289–295

    Google Scholar 

  26. Wang, W., Messner, G., Oberleithner, H., Lang, F., Deetjen, P. 1984. The effect of ouabain on intracellular activities of K+, Na+, Cl, H+ and Ca2+ in proximal tubule of frog kidneys.Pfluegers Arch. 401:6–13

    Google Scholar 

  27. Wang, W., Oberleithner, H., Lang, F. 1983. The effect of cAMP on the cell membrane potential and intracellular ion activities in proximal tubule ofRana esculenta.Pfluegers Arch. 369:192–198

    Google Scholar 

  28. Yoshitomi, K., Burckhardt, B.C., Frömter, E. 1985. Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule.Pfluegers Arch. 405:360–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Wang, Y., Silbernagl, S. et al. Fused cells of frog proximal tubule: II. Voltage-dependent intracellular pH. J. Membrain Biol. 101, 259–265 (1988). https://doi.org/10.1007/BF01872840

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872840

Key Words

Navigation