Skip to main content
Log in

Potassium conductance models related to an interactive subunit membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The properties of various potassium conductance models have been investigated using an analogue computer. It is shown that the experimental data of Hodgkin and Huxley can be fitted as satisfactorily by a cube (n 3) model of potassium conductance as it is by the Hodgkin-Huxley (n 4) and (n 6) models.

A planar subunit array structure for the membrane has been suggested, where the appearance of a potassium conducting channel depends upon a conformational change to an activated state in each of δ neighboring subunits. This system is described by the same mathematics as the Hodgkin-Huxley activating particle mechanism and so provides a physical basis for the power (n δ) formulae. Introduction of interaction between subunits, such that a conformational change is prohibited unless an adjacent subunit is in the activated state, modifies the mathematics and enables simulation of the delayed potassium currents observed by Cole and Moore (Biophys. J. 1:1, 1960). This innovation avoids the difficulties associated with the higher power (δ>6) models, by not requiring physical justification for large numbers of simultaneous events, while still providing a good fit to the experimental data. The interactive subunit models satisfactorily describe the potassium conductance changes which occur under voltage clamp or during an action potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H., Chandler, W. K., Hodgkin, A. L. 1970. Voltage clamp experiments in striated muscle fibres.J. Physiol. 208:607

    Google Scholar 

  • Armstrong, C. M. 1969. Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons.J. Gen. Physiol. 54:553

    Google Scholar 

  • Benedetti, E. L., Emmelot, P. 1968. Structure and function of plasma membranes isolated from the liver.In: The Membranes. A. J. Dalton and F. Haguenau, editors. p. 33. Academic Press Inc., New York

    Google Scholar 

  • Cartaud, J., Benedetti, E. L., Kasai, M., Changeux, J.-P. 1971.In vitro excitation of purified membrane fragments by cholinergic agonists. IV. Ultrastructure, at high resolution, of the AcChE-rich and ATPase-rich microsacs.J. Membrane Biol. 6:81

    Google Scholar 

  • Changeux, J. P. 1970. Allosteric interactions in regulatory proteins and excitable membranes.In: Université de Grenoble-Ecole d'eté de Physique Théoretique. Les Houches 1969. C. DeWitt and J. Matricom, editors. p. 81. Gordon and Breach, New York

    Google Scholar 

  • Cohen, L. B., Hille, B., Keynes, R. D., Landowne, D., Rojas, E. 1971. Analysis of the potential-dependent changes in optical retardation in the squid giant axon.J. Physiol. 218:205

    Google Scholar 

  • Cole, K. S., Moore, J. W. 1960. Potassium ion current in the squid giant axon: Dynamic characteristic.Biophys. J. 1:1

    Google Scholar 

  • Finean, R. 1969. Biophysical contributions to membrane structure.Quart. Rev. Biophys. 2:1

    Google Scholar 

  • FitzHugh, R. 1965. A kinetic model of the conductance changes in nerve membrane.J. Cell. Comp. Physiol. 66(Suppl. 2):111

    Google Scholar 

  • Fromherz, P. 1971. Electron microscopic studies of lipid protein films.Nature 231:267

    Google Scholar 

  • Gent, W. L. G., Gregson, N. A., Gammack, D. B., Raper, J. H. 1964. The lipid-protein unit in myelin.Nature 204:553

    Google Scholar 

  • Gill, S. 1951. A process for the step-by-step integration of differential equations in an automatic digital computing machine.Proc. Cambridge Phil. Soc. 47:96

    Google Scholar 

  • Hechter, O. 1965. Role of water structure in the molecular organisation of cell membranes.Fed. Proc. 24:S91

    Google Scholar 

  • Hill, T. L., Chen, Y. 1971a. On the theory of ion transport across the nerve membrane. II. Potassium ion kinetics and cooperativity (withx=4).Proc. Nat. Acad. Sci. 68:1711

    Google Scholar 

  • Hill, T. L., Chen, Y. 1971b. On the theory of ion transport across the nerve membrane. III. Potassium ion kinetics and cooperativity (withx=4, 6, 9).Proc. Nat. Acad. Sci. 68:2488

    Google Scholar 

  • Hill, T. L., Chen, Y. 1972a. On the theory of ion transport across the nerve membrane. IV. Noise from the open-close kinetics of K+ channels.Biophys. J. 12:948

    Google Scholar 

  • Hill, T. L., Chen, Y. 1972b. On the theory of ion transport across the nerve membrane. V. Two models for the Cole-Moore K+ hyperpolarization delay.Biophys. J. 12:960

    Google Scholar 

  • Hodgkin, A. L. 1958. Ionic movements and electrical activity in giant nerve fibres.Proc. Roy. Soc. B. 148:1

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F. 1952a. The components of membrane conductance in the giant axon ofLoligo.J. Physiol. 116:473

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F. 1952b. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. 117:500

    Google Scholar 

  • Hoyt, R. C. 1963. The squid giant axon: Mathematical models.Biophys. J. 3:399

    Google Scholar 

  • Korn, E. D. 1969. Current concepts of membrane structure and function.Fed. Proc. 28:6

    Google Scholar 

  • Lewis, E. R. 1964. Neural analog studies. III. Synaptic transfer function.Lab. Automata Research (Semi-Annual Report) 7:1

    Google Scholar 

  • Lucy, J. A. 1964. Globular lipid micelles and cell membranes.J. Theoret. Biol. 7:360

    Google Scholar 

  • Moore, J. W. 1968. Specifications for nerve membrane models.Proc. IEEE 56:895

    Google Scholar 

  • Onsager, L., Dupuis, M. 1962. The electrical properties of ice.In: Electrolytes-International Symposium. B. Pesce, editor. p. 27. Pergamon Press, New York

    Google Scholar 

  • Robertson, J. D. 1964. Unit membranes: A review with recent new studies of experimental alterations and a new subunit structure in synaptic membranes.In: Cellular Membranes in Development. M. Locke, editor. p. 1. Academic Press Inc., New York

    Google Scholar 

  • Schmitt, F. O., Davison, P. F. 1965. Role of protein in neural function.Neurosci. Res. Prog. Bull. 3(6):55

    Google Scholar 

  • Singer, S. J. 1971. The molecular organization of biological membranes.In: Structure and Function of Biological Membranes. L. I. Rothfield, editor. p. 146. Academic Press Inc., New York

    Google Scholar 

  • Singer, S. J., Nicolson, G. L. 1972. The fluid mosaic model of the structure of cell membranes.Science 175:720

    Google Scholar 

  • Stevens, C. F. 1972. Inferences about membrane properties from electrical noise measurements.Biophys. J. 12:1028

    Google Scholar 

  • Tille, J. 1965. A new interpretation of the dynamic changes of the potassium conductance in the squid giant axon.Biophys. J. 5:163

    Google Scholar 

  • Wilkins, M. H. F., Blaurock, A. E., Engelman, D. M. 1971. Bilayer structure in membranes.Nature, New Biol. 230:72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bretag, A.H., Davis, B.R. & Kerr, D.I.B. Potassium conductance models related to an interactive subunit membrane. J. Membrain Biol. 16, 363–380 (1974). https://doi.org/10.1007/BF01872424

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872424

Keywords

Navigation