Skip to main content
Log in

Intercellular adhesion: Modification by dielectric properties of the medium

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The low radio frequency dielectric constant of aqueous solutions of glycine, diglycine,d-sorbitol, Dextran and Ficoll were determined. These values were used to predict the dielectric constant of Hanks-199 tissue culture medium to which various concentrations of these compounds had been added. Single cell dispersions of two chick embryonic tissues, 7-day neural retina and 5-day limb bub, were prepared in tissue culture media of varying dielectric constant. Selected cell dispersions were examined by means of particle electrophoresis and the observations of zeta potentials were interpreted as showing that no significant adsorption of added compounds in the media was occurring onto the cell membranes.

Cell suspensions in media of a range of dielectric constant were subjected to a laminar flow shear gradient in a couette viscometer effecting aggregation of these suspensions. This method allowed a calculation of the total energy of adhesive interaction of the cells. It was shown that 5-day limb bud tissue has a much lower adhesive interaction energy than 7-day neural retina tissue. It was observed that in both tissues there was a steady increase in the adhesive interaction of the cells with increasing dielectric constant of the medium. These results are discussed in relation to the lyophobic colloid stability theory of cell adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramson, H. A., Moyer, L. S., Gorin, M. H. 1942. Electrophoresis of Proteins. Reinhold Publishing Co., New York

    Google Scholar 

  • Allgén, L.-G., Roswall, S. 1954. A dielectric study of a carboxymethylcellulose in aqueous solution.J. Polymer. Sci. 12:229

    Google Scholar 

  • Brooks, D. E. 1971. Theoretical and experimental studies on the interaction of neutral polymers with cell surfaces.Biophys. Soc. Abstr. 15 (TPM-G 16):65a

    Google Scholar 

  • Brooks, D. E., Millar, J. S., Seaman, G. V. F., Vassar, P. S. 1967. Some physiochemical factors relevant to cellular interactions.J. Cell Physiol. 69:155

    Google Scholar 

  • Brooks, D. E., Seaman, G. V. F. 1972. Electroviscous effect in dextran-erythrocyte suspensions.Nature 238:251

    Google Scholar 

  • Brooks, D. E., Seaman, G. V. F. 1973. The effect of neutral polymers on the electrokinetic potential of cells and other charged particles. 1. Models for the zeta potential increase.J. Colloid Interface Sci. 43:670

    Google Scholar 

  • Buckley, F., Maryott, A. A. 1958. Tables of dielectric dispersion data for pure liquids and dilute solutions. National Bureau of Standards Circular 589. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Collins, M. 1966. Electrokinetic properties of dissociated chick embryo cells. I. pH-surface charge relationship and the effect of calcium ions.J. Exp. Zool. 163:23

    Google Scholar 

  • Curtis, A. S. G. 1966. Cell adhesion.Sci. Prog. Oxf. 54:61

    Google Scholar 

  • Curtis, A. S. G. 1967. The Cell Surface. Logos & Academic Press, London

    Google Scholar 

  • Curtis, A. S. G. 1969. The measurement of cell adhesiveness by an absolute method.J. Embryol. 22:305

    Google Scholar 

  • Curtis, A. S. G., Greaves, M. F. 1965. The inhibition of cell aggregation by a pure serum protein.J. Embryol. 13:309

    Google Scholar 

  • Curtis, A. S. G., Hocking, L. M. 1970. Collision efficiency of equal spherical particles in a shear flow. The influence of London-Van der Waals forces.Trans. Faraday Soc. 66:1381

    Google Scholar 

  • Derjaguin, B. V., Landau, L. D. 1941. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes.Acta Physicochim., U.R.S.S. 14:633

    Google Scholar 

  • Dzyaloshinskii, I. E., Lifshitz, E. M., Pitaevskii, L. P. 1960. Van der Waals forces in liquid films.Soviet Phys. J.E.T.P. 37 (10):161

    Google Scholar 

  • Fricke, H., Curtis, H. J. 1937. The dielectric properties of water-dielectric interphases.J. Phys. Chem. 41:729

    Google Scholar 

  • Gingell, D. 1971. Computed force and energy of membrane interaction.J. Theoret. Biol. 30:121

    Google Scholar 

  • Gregory, J. 1969. The calculation of Hamaker constants.Advanc. Colloid Interface Sci. 2:396

    Google Scholar 

  • Handbook of Chemistry and Physics. 1966. 47th Edition. Chemical Rubber Publishing Co., Ohio

  • Haydon, D. A., Seaman, G. V. F. 1962. An estimation of the surface ionogenic groups of the human erythrocyte and ofEscherichia coli.Proc. Roy. Soc. (A) 156:539

    Google Scholar 

  • Jones, G. E. 1972 Studies on Intercellular Adhesion. Ph. D. Thesis. University of Glasgow, Scotland

    Google Scholar 

  • Kruyt, H. R. editor. 1952. Colloid Science, Vol. I. Elsevier Publishing Co., Amsterdam

    Google Scholar 

  • Lifshitz, E. M. 1956. The theory of molecular attractive forces between solids.Soviet Phys. J.E.T.P. 29(2):73

    Google Scholar 

  • Mandel, M. 1965. Comments on impedance measurements of protein solutions.Proc. Colloquium Protides of Biological Fluids. 13:415

    Google Scholar 

  • Maryott, A. A., Smith, E. R. 1951. Table of dielectric constants of pure liquids. National Bureau of Standards Circular 514. U. S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Moscona, A. A. 1961. Rotation-mediated histogenic aggregation of dissociated cells.Exp. Cell Res. 22:455

    Google Scholar 

  • Moscona, A. A. 1962. Analysis of cell recombinations in experimental synthesis of tissuesin vitro.J. Cell Comp. Physiol. 60 (suppl. 1):65

    Google Scholar 

  • Ninham, B. W., Parsegian, V. A. 1970. Van der Waals forces: Special characteristics in lipid-water systems and a general method of calculation based on the Lifshitz theory.Biophys. J. 10:646

    Google Scholar 

  • Oncley, J. L. 1938. Studies of the dielectric, properties of protein solutions. I. Carboxyhaemoglobin.J. Amer. Chem. Soc. 60:1115

    Google Scholar 

  • Parsegian, V. A., Ninham, B. W. 1969. Application of the Lifshitz theory to calculation of Van der Waals forces across thin lipid films.Nature 224:1197

    Google Scholar 

  • Pethica, B. A. 1961. The physical chemistry of cell adhesion.Exp. Cell Res., Suppl. 8 p. 123

    Google Scholar 

  • Pollack, W., Hager, H. J., Reckel, R., Toren, D. A., Singher, H. O. 1965. A study of the forces involved in the second stage of haemagglutination.Transfusion 5:158

    Google Scholar 

  • Schwan, H. P. 1963. Determination of biological impedances.In: Physical Techniques in Biological Research. W. L. Nastuk, editor. Vol. 6B, p. 323. Academic Press, London

    Google Scholar 

  • Schwan, H. P., Maczuk, J. 1960. Simple technique to control the stray field of electrolytic cells.Rev. Sci. Instrum. 31:59

    Google Scholar 

  • Seaman, G. V. F. 1965. Electrophoresis using a cylindrical chamber.In: Cell Electrophoresis. E. J. Ambrose, editor. p. 4. J. and A. Churchill Ltd., London

    Google Scholar 

  • Shaw, T. H. 1942. The elimination of errors due to electrode polarisation in measurements of the dielectric constants of electrolytes.J. Chem. Phys. 10:609

    Google Scholar 

  • Steinberg, M. S. 1964. The problems of adhesive selectivity in cellular interactions.In: Cellular Membranes in Development. M. Lock, editor., p. 321. Academic Press, London

    Google Scholar 

  • Verwey, E. J. W., Overbeek, J. Th. G., 1948. Theory of the Stability of Lyophobic Colloids. Elsevier Publishing Co., Amsterdam

    Google Scholar 

  • Weiss, L. 1967. The Cell Periphery, Metastasis and other Contact Phenomena. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Wilkins, D. J., Ottewill, R. H., Bangham, A. D. 1962a. On the flocculation of sheep leucocytes. I. Electrophoretic studies.J. Theoret. Biol. 2:165

    Google Scholar 

  • Wilkins, D. J., Ottewill, R. H., Bangham, A. D. 1962b. On the flocculation of sheep leucocytes. II. Stability studies.J. Theoret. Biol. 2:176

    Google Scholar 

  • Wyman, J., McMeekin, T. L. 1933. The dielectric constant of solutions of amino acids and peptides.J. Amer. Chem. Soc. 55:908

    Google Scholar 

  • Young, S. E., Grant, E. H. 1968. Measurements of permittivity of some biological solutions at frequencies below 1 MHz.J. Sci. Instrum. 1:429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, G.E. Intercellular adhesion: Modification by dielectric properties of the medium. J. Membrain Biol. 16, 297–312 (1974). https://doi.org/10.1007/BF01872420

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872420

Keywords

Navigation