Skip to main content
Log in

The interaction of fluorescent probes with anion permeability pathways of human red cells

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The fluorescent probe ANS is a permeant anion in human red cells. The rate of ANS permeation is decreased by lyotropic anions and increased by low ionic strength, resembling the response of Cl and SO4 transport to changes in the composition of the medium. ANS inhibits Cl and SO4 exchange measured at 0 and 37°C, respectively. The inhibitory potency of ANS isomers increases in the sequence 1,8 ANS<2,8 ANS<1,4 ANS<2,6 TNS<5,2 ANS. The disulfonic stilbene derivative SITS inhibits Cl exchange 50%. Combinations of ANS and SITS result in additive inhibitory effects regardless of the ANS concentration. Combinations of dipyridamole and ANS show additive inhibitory effects only at low concentrations of the latter. The mechanisms of inhibition by ANS are discussed in terms of (1) interactions between the probe and an anion carrier and (2) modifications of the membrane surface charge by ANS. Assuming that ANS bound to the membrane surface produces a negative surface charge, ANS-dependent surface potentials of magnitude sufficient to account for the observed inhibition can be calculated using double layer theory. It is suggested that anionic amphiphiles inhibit anion and increase cation permeability through modifications of surface charge that alter the ion concentrations at the permeability barriers and a second step, affected by SITS, is involved in anion permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bangham, A. D., Standish, M. M., Watkins, J. C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol. 13:238

    Google Scholar 

  • Cabantchik, Z. I., Rothstein, A. 1972. The nature of the membrane sites controlling anion permeability of human red blood cells as determined by studies with disulfonic stilbene derivatives.J. Membrane Biol. 10:311

    Google Scholar 

  • Dalmark, M. 1972. The effect of temperature bicarbonate-carbon dioxide and pH on the chloride transport across the human erythrocyte membrane.In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. M. Rørth and P. Astrup, editors. p. 320. Munksgaard, Copenhagen

    Google Scholar 

  • Dalmark, M., Wieth, J. O. 1972. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells.J. Physiol. 224:583

    Google Scholar 

  • Davies, J. T., Rideal, E. K. 1963. Interfacial Phenomena. Academic Press Inc., New York

    Google Scholar 

  • Deuticke, B. 1970. Anion permeability of the red blood cell.Naturwissenschaften 57:172

    Google Scholar 

  • Ehrenspeck, G., Passow, H. 1973. Halide fluxes in liposomes made from red blood cells.In: Erythrocytes, Thrombocytes, Leukocytes: Recent Advances in Membrane and Metabolic Research. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 80. Georg Thieme Publishers, Stuttgart

    Google Scholar 

  • Fortes, P. A. G. 1972. Structural Properties of the Human Red Cell Membrane and Mechanisms of Anion Permeability Studied with Fluorescent Probes. Ph. D. Thesis. University of Pennsylvania, Philadelphia, Pa.Diss. Abstr. Int. B 33(7):2961

    Google Scholar 

  • Fortes, P. A. G., Hoffman, J. F. 1971. Interactions of the fluorescent anion 1-anilino-8-naphthalene sulfonate with membrane charges in human red cell ghosts.J. Membrane Biol. 5:154

    Google Scholar 

  • Fortes, P. A. G., Hoffman, J. F. 1973. Inhibition of anion permeability in the human red cell by fluorescent probes.In: Erythrocytes, Thrombocytes, Leukocytes: Recent Advances in Membrane and Metabolic Research. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 92. Georg Thieme Publishers, Stuttgart

    Google Scholar 

  • Fortes, P. A. G., Yguerabide, J., Hoffman, J. F. 1972a. Nanosecond fluorescence spectroscopy of ANS in red cell ghosts.Biophys. Soc. Abstr. 255a

  • Fortes, P. A. G., Yguerabide, J., Hoffman, J. F. 1972b. Membrane properties and the mechanism of anion permeability in human red cells as studied with fluorescent probes.Abstr. IV Int. Biophys. Congr., Moscow3:135

    Google Scholar 

  • Freedman, R. B., Radda, G. K. 1969. The interaction of 1-anilino-8-naphthalene sulfonate with erythrocyte membranes.FEBS Letters 3:150

    Google Scholar 

  • Gardos, G., Hoffman, J. F., Passow, H. 1969. Flux measurements in erythrocytes.In: Laboratory Techniques in Membrane Biophysics. H. Passow and R. Stampfli, editors. p. 9. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Gunn, R. B. 1972. A titratable carrier model for both mono- and divalent inorganic anions in red blood cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. M. Rørth and P. Astrup, editors. p. 823. Munksgaard, Copenhagen

    Google Scholar 

  • Gunn, R. B. 1973. A titratable carrier for monovalent and divalent inorganic anions in red blood cells.In: Erythrocytes, Thrombocytes, Leukocytes: Recent Advances in Membrane and Metabolic Research. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 77. Georg Thieme Publishers, Stuttgart

    Google Scholar 

  • Gunn, R. B., Dalmark, M., Tosteson, D. C., Wieth, J. O. 1973. Characteristics of chloride transport in human red blood cells.J. Gen. Physiol. 61:185

    Google Scholar 

  • Gunn, R. B., Tosteson, D. C. 1971. The effect of 2,4,6-trinitro-m-cresol on cation and anion transport in, sheep red cells.J. Gen. Physiol. 57:593

    Google Scholar 

  • Harris, E. J., Pressman, B. C. 1967. Obligate cation exchanges in red cells.Nature 216:918

    Google Scholar 

  • Haydon, D. A., Myers, V. B. 1973. Surface charge, surface dipoles and membrane conductance.Biochim. Biophys. Acta 307:429

    Google Scholar 

  • Haynes, D. H. 1972. 1-amino-8-naphtyl sulfonate as an indicator of membrane structure and surface potential.Abstr IV Int. Biophys. Congr., Moscow3:252

    Google Scholar 

  • Henderson, P. J. F., McGivan, J. D., Chappell, J. B. 1969. The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes. The role of induced proton permeability.Biochem. J. 111:521

    Google Scholar 

  • Hoffman, J. F., Lassen, U. V. 1971. Plasma membrane potentials inAmphiuma red cells.Abstr. XXV Int. Physiol. Congr. Munich, p. 253

  • Hunter, M. J. 1971. A quantitative estimate of the non-exchange-restricted chloride permeability of the human red cell.J. Physiol. 218:49P

    Google Scholar 

  • Knauf, P. A., Rothstein, A. 1971. Chemical modification of membranes. I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190

    Google Scholar 

  • Lassen, U. V. 1972. Membrane potential and membrane resistance of red cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid Base Status. M. Rørth and P. Astrup, editors. p. 291. Munksgaard, Copenhagen

    Google Scholar 

  • Lepke, S., Passow, H. 1971. The permeability of the human red blood cell to sulfate ions.J. Membrane Biol. 6:158

    Google Scholar 

  • Lesslauer, W., Cain, J., Blasie, J. K. 1971. On the location of 1-anilino-8-naphthalene-sulfonate (ANS) in lipid model systems. An X-ray diffraction study.Biochim. Biophys. Acta 241:547

    Google Scholar 

  • Maddy, A. 1964. A fluorescent label for the outer components of the plasma membrane.Biochim. Biophys. Acta 88:390

    Google Scholar 

  • McLaughlin, S. G. A., Szabo, G., Eisenman, G. 1971. Divalent ions and the surface potential of charged phospholipid membranes.J. Gen. Physiol. 58:667

    Google Scholar 

  • Pagano, R., Thompson, T. E. 1968. Spherical lipid bilayer membranes: Electrical and isotopic studies of ion permeability.J. Mol. Biol. 38:41

    Google Scholar 

  • Passow, H. 1969. Passive ion permeability of the erythrocyte membrane.Prog. Biophys. Mol. Biol. 19:425

    Google Scholar 

  • Passow, H. 1971. Effects of pronase on passive ion permeability of the human red blood cell.J. Membrane Biol. 6:233

    Google Scholar 

  • Passow, H., Schnell, K. F. 1969. Chemical modifiers of passive ion permeability of the erythrocyte membrane.Experientia 25:460

    Google Scholar 

  • Poensgen, J., Passow, H., 1971. Action of 1-fluoro-2,4-dinitrobenzene on passive ion permeability of the human red blood cell.J. Membrane Biol. 6:210

    Google Scholar 

  • Rubalcava, B., Martinez de Muñoz, D., Gitler, C. 1969. Interaction of fluorescent probes with membranes. I. Effect of ions on erythrocyte membranes.Biochemistry 8:2742

    Google Scholar 

  • Scarpa, A., Cecchetto, A., Azzone, G. F. 1970. The mechanism of anion translocation and pH equilibration in erythrocytes.Biochim. Biophys. Acta 219:179

    Google Scholar 

  • Stryer, L. 1968. Fluorescence spectroscopy of proteins.Science 162:526

    Google Scholar 

  • Szabo, G., Eisenman, G. 1973. Enhanced cation permeation in glyceryl oleate bilayers.Biophys. Soc. Abstr., 175a

  • Tosteson, D. C. 1959. Halide transport in red blood cells.Acta. Physiol. Scand. 46:19

    Google Scholar 

  • Tosteson, D. C., Gunn, R. B., Wieth, J. O. 1973. Chloride and hydroxyl ion conductances in sheep red cell membranes.In: Erythrocytes, Leukocytes, Thrombocytes: Recent Advances in Membrane Research. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 62. Georg Thieme Publishers, Stuttgart

    Google Scholar 

  • Wieth, J. O., 1970. Effect of some monovalent anions on chloride and sulphate permeability of human red cells.J. Physiol. 207:581

    Google Scholar 

  • Wieth, J. O., Dalmark, M., Gunn, R. B., Tosteson, D. C. 1973. The transfer of monovalent inorganic anions through the red cell membrane.In: Erythrocytes, Thrombocytes, Leukocytes: Recent Advances in Membrane and Metabolic Research. E. Gerlach, K. Moser, E. Deutsch, and W. Wilmanns, editors. p. 71. Georg Thieme Publihsers, Stuttgart

    Google Scholar 

  • Wood, P. G., Passow, H. 1971. Iodide transport in the human red blood cell.Abstr. XXIII Int. Congr. Physiol. Sci., Munich. p. 608

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortes, P.A.G., Hoffman, J.F. The interaction of fluorescent probes with anion permeability pathways of human red cells. J. Membrain Biol. 16, 79–100 (1974). https://doi.org/10.1007/BF01872408

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872408

Keywords

Navigation