Skip to main content
Log in

Contributions of secondary active transport processes to membrane potentials

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Equations are developed to examine the effects of secondary active transport processes on the steady-state membrane potential of symmetrical cells. It is shown that, with suitable modifications, equations of the type developed by Goldman, Hodgkin and Katz may be derived to accommodate the contributions to the membrane potential of both electroneutral and electrogenic transporters. Where the membrane potential is function of the dominant medium ions (Na, K, and Cl), other contributions can come only from an electrogenic Na pump and from neutral co- and counter-transporters if, and only if, these involve the dominant ions. Experimental approaches to measure the parameters necessary to solve the equations developed here are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boron, W.F. 1986. Intracellular pH regulation.In: Physiology of Membrane Disorders. (2nd ed.) T.E. Andreoli et al., editors. pp. 423–435. Plenum Medical Book, New York

    Google Scholar 

  • Cabantchik, Z.I., Kanuf, P.A., Rothstein, A. 1978. The anion transport system of the red blood cell: The role of the membrane protein evaluated by the use of ‘probes’.Biochim. Biophys. Acta 515:239–302

    Google Scholar 

  • Crane, R.K. 1962. Hypothesis for mechanism of intestinal active transport of sugars.Fed. Proc. 21:891–895

    Google Scholar 

  • Geck, P., Heinz, E. 1986. The Na−K−2Cl cotransport system.J. Membrane Biol. 91:97–105

    Google Scholar 

  • Geck, P., Pietrzyk, C., Burckhardt, B.-C., Peiffer, B., Heinz, E. 1980. Electrically silent cotransport of Na+, K+, and Cl in Ehrlich cells.Biochim. Biohys. Acta 600:432–447

    Google Scholar 

  • Goldman, D.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Google Scholar 

  • Gordon, L.G.M., Macknight, A.D.C. 1991. Application of membrane potential equations to tight epithelia.J. Membrane Biol. 120:155–163

    Google Scholar 

  • Grinstein, S., Rothstein, A. 1986. Mechanisms of regulation of the Na+/H+ exchanger.J. Membrane Biol. 90:1–12

    Google Scholar 

  • Hodgkin, A.L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. 108:37–77

    Google Scholar 

  • Jacob, R., Piwnica-Worms, D., Horres, C.R., Lieberman, M. 1984. Theoretical effects of transmembrane electroneutral exchange on membrane potential.J. Gen. Physiol. 83:47–56

    Google Scholar 

  • Jacob, R., Piwnica-Worms, D., Horres, C.R., Lieberman, M. 1985. Electroneutral Na−H exchange may depolarize the resting membrane potential.J. Gen. Physiol. 85:891–895

    Google Scholar 

  • Jacquez, J.A., Schultz, S.G. 1974. A general relation between membrane potentials, ion activities, and pump fluxes for symmetric cells in a steady state.Math. Biosci. 20:19–25

    Google Scholar 

  • Kaunitz, J.D., Wright, E.M. 1984. Kinetics of sodiumd-glucose cotransport in bovine intestinal brush border vesicles.J. Membrane Biol. 79:41–51

    Google Scholar 

  • Knauf, P.A. 1986. Anion transport in erythrocytes.In: Physiology of Membrane Disorders. (2nd ed.) T.E. Andreoli et al., editors. pp. 191–220. Plenum Medical Book, New York

    Google Scholar 

  • Läuger, P., Jauch, P. 1986. Microscopic description of voltage effects on ion-driven cotransport systems.J. Membrane Biol. 91:275–284

    Google Scholar 

  • Moreton, R.B. 1969. An investigation of electrogenic sodium pump in snail neurones using the constant field theory.J. Exp. Biol. 51:181–201

    Google Scholar 

  • Mullins, L.J., Noda, K. 1963. The influence of sodium-free solutions on the membrane potential of frog sartorius muscle.J. Gen. Physiol. 47:117–132

    Google Scholar 

  • Murer, H., Hopfer, U., Kinne, R. 1976. Sodium/proton antiport in brush border membrane vesicles isolated from the rat small intestine and kidney.Biochem. J. 154:597–604

    Google Scholar 

  • O'Grady, S.M., Palfrey, H.C., Field, M. 1987. Characteristics and functions of Na−K−Cl cotransport in epithelial tissues.Am. J. Physiol. 253:C177-C192

    Google Scholar 

  • Restrepo, D., Kimmich, G.A. 1985. Kinetic analysis of the mechanism of intestinal Na+-dependent sugar transport.Am. J. Physiol. 248:C498-C509

    Google Scholar 

  • Schatzmann, H.J. 1985. Calcium extrusion across the plasma membrane by the calcium pump and the Ca2+−Na+ exchange system.In: Marme, Calcium and Cell Physiology. pp. 18–52. Springer-Verlag, Berlin

    Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and inorganic solutes.Physiol. Rev. 50:637–718

    Google Scholar 

  • Scriven, D.R.L., Mundel, T. 1985. Electroneutral Na−H exchange does not depolarize the resting membrane potential.J. Gen. Physiol. 85:933–935

    Google Scholar 

  • Sjodin, R.A. 1983. Contributions of Na/Ca transport to the resting membrane potential.J. Gen. Physiol. 76:99–108

    Google Scholar 

  • Teorell, T. 1953. Transport processes and electrical phenomena in ionic membranes.Prog. Biophys. Chem. 3:305–369

    Google Scholar 

  • Yoshitomi, K., Burckhardt, B.C., Frömter, E. 1985. Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule.Pfluegers Arch. 405:360–366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, L.G.M., Macknight, A.D.C. Contributions of secondary active transport processes to membrane potentials. J. Membrain Biol. 120, 141–154 (1991). https://doi.org/10.1007/BF01872397

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872397

Key Words

Navigation