Skip to main content
Log in

Effect of anions on the cation selectivity of gramicidin-containing liposomes

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

An osmotic method was used to study the salt permeability induced by gramicidin A in liposomes. Sequences of cation permeation were obtained for iodide, salycilate, acetate und formate salts in liposomes below and above their transition temperature. Salycilate and formate salts, unlike acetate and iodide salts, exhibit the same sequences for cation selectivity in liposomes below and above their transition temperature. These results can be explained by assuming three mechanisms for salt permeation across gramicidin-containing liposomes: (i) the anion moves by the lipid part of the membrane whereas the cation moves by the gramicidin channel, (ii) movement of the undissociated acid species occurs through the lipid part of the membrane followed by cation-proton exchange via the gramicidin channel and (iii) the cation and anion may move simultaneously via the gramicidin channel.

When the movement of the anion or undissociated acid across the lipid part of the membrane is not rate limiting the permeation process, the cation selectivity obtained agrees with the cation selectivity of the gramicidin A channel, as determined by others using independent measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alger, J.R., Prestegard, J.H. 1979. Nuclear magnetic resonance study of acetic acid permeation of large unilamellar vesicle membranes.Biophys. J. 28:1–14

    Google Scholar 

  • Archer, D.W., Monk, C.B. 1964. Ion-association of some acetates by pH (glass-electrode) measurements.J. Chem. Soc. (1964):3117–3122

    Google Scholar 

  • Bamberg, E., Apell, H.J., Alpes, H. 1977. Structure of the gramicidin A channel: Discrimination between the {ie87-1 helix and the β helix by electrical measurements with lipid bilayer membranes}.Proc. Natl. Acad. Sci. USA 74:2402–2406

    Google Scholar 

  • Bangham, A.D., Hill, M.W., Miller, N. 1974. Preparation and use of liposomes as models of biological membranes.In: Methods in Membrane Biology. Vol. 1, pp. 1–68. E.D. Korn, editor. Plenum Press, New York

    Google Scholar 

  • Bangham, A.D., Standish, M., Watkins, J.C. 1965. Diffusion of univalent ions across the lamellae of swollen phospholipids.J. Mol. Biol. 13:238–252

    Google Scholar 

  • Boehler, B.A., De Gier, J., Van Deenen, L.L.M. 1978. The effect of gramicidin A on the temperature dependence of water permeation through liposomal membranes prepared from phosphatidyl-cholines with different chain lengths.Biochim. Biophys. Acta 512:480–488

    Google Scholar 

  • Bray, G.A. 1960. A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter.Anal. Biochem. 1:279–285

    Google Scholar 

  • Chapman, D., Urbina, J., Keough, K.M. 1974. Biomembrane phase transition: Studies of lipid-water system using differential scanning calorimetry.J. Biol. Chem. 249:2512–2521

    Google Scholar 

  • Chappell, J.B., Crofts, A.R. 1965. Gramicidin and ion transport in isolated liver mitochondria.Biochem. J. 95:393–402

    Google Scholar 

  • Cohen, B.E. 1975a. The permeability of liposomes to nonelectrolytes: I. Activation energies for permeation.J. Membrane Biol. 20:205–234

    Google Scholar 

  • Cohen, B.E. 1975b. The permeability of liposomes to nonelectrolytes: II. The effect of nystatin and gramicidin A.J. Membrane Biol. 20:235–268

    Google Scholar 

  • Cohen, B.E., Bangham, A.D. 1972. Diffusion of small nonelectrolytes across liposomes membranes.Nature (London) 236:173–174

    Google Scholar 

  • Collander, R. 1950. The distribution of organic compounds between isobutanol and water.Acta Chem. Scand 4:1085–1098

    Google Scholar 

  • Eisenman, G. 1961. On the elementary atomic origin of equilibrium ionic specificity.In: Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, editor pp. 163–179. Academic Press, New York

    Google Scholar 

  • Eisenman, G., Krasne, S., Ciani, S. 1976. Further studies on ion selectivity.In: Ion and Enzyme Electrodes in Biology and Medicine. pp. 3–21. M. Kessler, L. Clark, D. Lubbers, I. Silver, and W. Simon, editor. Urban & Schwarzenberg, Munich

    Google Scholar 

  • Eisenman, G., Sandblom, J., Neher, E. 1977. Ionic selectivity, saturation, binding and block in the gramicidin A channel: A preliminary report.In: Metal-ligand Interaction in Organic Chemistry and Biochemistry. B. Pullman and N. Goldblum, editors. Part 2, pp. 1–36. D. Reidel, Dordrecht-Holland

    Google Scholar 

  • Eisenman, G., Sandblom, J., Neher, E. 1978. Interactions in cation permeation through the gramicidin channel. Cs, Rb, K, Na, Li, Tl, H and effects of anion binding.Biophys. J. 22:307–346

    Google Scholar 

  • Finkelstein, A., Cass, A. 1968. Permeability and electric properties of thin lipid membranes.J. Gen. Physiol. 52:145s-172s

    Google Scholar 

  • Goodall, M.C. 1971. Thickness dependence in the action of gramicidin A on lipid bilayers.Arch. Biochim. Biophys. 147:129–135

    Google Scholar 

  • Haydon, D.A., Hladky, S.B. 1972. Ion transport across thin lipid membranes: A critical discussion of mechanism in selected systems.Q. Rev. Biophys. 5:187–282

    Google Scholar 

  • Henderson, P.J.F., McGivan, J.D., Chappell, J.B. 1969. The action of certain antibiotics on mitochondrial, erythrocyte and artificial phospholipid membranes.Biochem. J. 111:521–535

    Google Scholar 

  • Hendrikson, J.B., Cram, D.J., Hammond, G.S. 1970. Organic Chemistry. McGraw-Hill, New York

    Google Scholar 

  • Hill, M.W., Cohen, B.E. 1972. A simple method of determining relative permeabilities of liposomes to nonelectrolytes.Biochim. Biophys. Acta 290:403–407

    Google Scholar 

  • Hladky, S.B. 1972. The two site lattice model for the pore. Appendix B′ Ph.D. dissertation, Cambridge University, England

    Google Scholar 

  • Hladky, S.B., Haydon, D.A. 1970. Discreteness of conductance changes in bimolecular lipid membranes in the presence of certain antibiotics.Nature (London) 255:451–453

    Google Scholar 

  • Hladky, S.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel.Biochim. Biophys. Acta 274:294–312

    Google Scholar 

  • Krasne, S., Eisenman, G., Szabo, G. 1971. Freezing and melting of lipid bilayers and the mode of action of nonactin, valinomycin and gramicidin.Science 174:412–415

    Google Scholar 

  • Läuger, P. 1973. Ion transport through pores. A rate-theory analysis.Biochim. Biophys. Acta 311:423–441

    Google Scholar 

  • McLaughlin, S. 1973. Salicylates and phospholipid bilayer membranes.Nature (London) 243:234–236

    Google Scholar 

  • McLaughlin, S.G.A., Szabo, G., Eisenman, G., Ciani, S.M. 1970. Surface charge and the conductance of phospholipid membranes.Proc. Natl. Acad. Sci. USA 67:1268–1275

    Google Scholar 

  • Monk, C.B. 1961. Electrolytic dissociation. P. 271. Academic Press, New York

    Google Scholar 

  • Mueller, P., Rudin, D.O. 1967. Development of K+−Na+ discrimination in experimental bimolecular lipid membranes by macrocyclic antibiotics.Biochem. Biophys. Res. Commun. 26:398–404

    Google Scholar 

  • Myers, V.B., Haydon, D.A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A: II. The ion selectivity.Biochim. Biophys. Acta 274:313–322

    Google Scholar 

  • Oldfield, E., Meadows, M., Rice, D., Jacobs, R. 1978. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems.Biochemistry 17:2727–2740

    Google Scholar 

  • Papahadjopoulos, D., Miller, N. 1967. Phospholipid model membranes: I. Structural characteristics of hydrated liquid crystals.Biochim. Biophys. Acta 135:624–638

    Google Scholar 

  • Pressman, B.C. 1965. Induced active transport of ions into mitochondria.Proc. Natl. Acad. Sci. USA 53:1076–1083

    Google Scholar 

  • Robinson, R.A., Stokes, R.H. 1970. Electrolyte Solutions. (2nd ed.) Butterworths, London

    Google Scholar 

  • Rosenberg, P.A., Finkelstein, A. 1978. Water permeability of gramicidin A-treated lipid bilayer membranes.J. Gen. Physiol. 72:341–350

    Google Scholar 

  • Sandblom, J., Eisenman, G., Neher, E. 1977. Ionic selectivity, saturation and block in gramicidin A channels: I. Theory for the electric properties of ion selective channels having two pairs of binding sites and multiple conductance states.J. Membrane Biol. 31:383–417

    Google Scholar 

  • Singer, M.A. 1973. Transfer of anions across phospholipid membranes.Can. J. Physiol. Pharmacol. 51:523–531

    Google Scholar 

  • Singer, M.A., Bangham, A.D. 1971. The consequences of inducing salt permeability in liposomes.Biochim. Biophys. Acta 241:687–692

    Google Scholar 

  • Szabo, G., Eisenman, G., McLaughlin, S., Krasne, S. 1972. Ionic probes of membrane structures.Ann. N.Y. Acad. Sci. 195:273–295

    Google Scholar 

  • Tosteson, D.C. 1968. Effect of macrocyclic compounds on the ionic permeability of artificial and natural membranes.Fed. Proc. 27:1269–1277

    Google Scholar 

  • Urban, B.W., Hladky, S.B., Haydon, D.A. 1980. Ion movements in gramicidin pores. An example of single-file transport.Biochim. Biophys. Acta 602:331–354

    Google Scholar 

  • Urry, D.W. 1971. The gramicidin A transmembrane channel. A proposed {ie88-1 helices}.Proc. Natl. Acad. Sci. USA 68:672–676

    Google Scholar 

  • Urry, D.W., Goodall, M.C., Glickson, J.D., Mayers, D.F. 1971. The gramicidin A transmembrane channel: Characteristics of head to head dimerized {ie88-2 helices}.Proc. Natl. Acad. Sci. USA 68:1907–1911

    Google Scholar 

  • Veatch, W.R., Fossel, E.T., Blout, E.R. 1974. The conformation of gramicidin A.Biochemistry 13:5249–5256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, B.E. Effect of anions on the cation selectivity of gramicidin-containing liposomes. J. Membrain Biol. 68, 79–88 (1982). https://doi.org/10.1007/BF01872256

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872256

Key words

Navigation