Skip to main content
Log in

Regulation of the basolateral potassium conductance of theNecturus proximal tubule

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Two methods, the measurement of the response of the basolateral membrane potential (V bl) of proximal tubule cells ofNecturus to step changes in basolateral K+ concentration, and cellular cable analysis, were used to assess the changes in basolateral potassium conductance (G K) caused by a variety of maneuvers. The effects of some of these maneuvers on intracellular K+ activity (a iK ) were also evaluated using double-barreled ion-selective electrodes. Perfusion with 0mm K+ basolateral solution for 15 min followed by 45 min of 1mm K+ solution resulted in a fall in basolateral potassium (apparent) transference number (t K),V bl anda iK . Results of cable analysis showed that total basolateral resistance,R b , rose. The electrophysiological effects of additional manipulations, known to inhibit net sodium reabsorption across the proximal tubular epithelium ofNecturus, were also investigated. Ouabain caused a fall int K accompanied by large decreases ina iK andV bl. Lowering luminal sodium caused a fall int K and a small reduction inV bl. Selective reduction of peritubular sodium, a maneuver that has been shown to block sodium transport from lumen to peritubular fluid, also resulted in a significant decrease int K. These results suggest thatG K varies directly with rate of transport of the sodium pump, irrespective of the mechanism of change in pump turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balaban, R.S., Mandel, L.J., Soltoff, S., Storey, J.M. 1980. Coupling of Na−K-ATPase activity to aerobic respiratory rate in isolated cortical tubules from the rabbit kidney.Proc. Natl. Acad. Sci. USA 77:447–451

    Google Scholar 

  • Biagi, B., Sohtell, M., Giebisch, G. 1981. Intracellular potassium activity in the rabbit proximal straight tubule.Am. J. Physiol. 241:F677-F686

    Google Scholar 

  • Blum, R.M., Hoffman, J.F. 1971. The membrane locus of Ca-stimulated K transport in energy depleted human red blood cells.J. Membrane Biol. 6:315–328

    Google Scholar 

  • Boron, W.F., Boulpaep, E.L. 1983. Intracellular pH regulation in the renal proximal tubule of the salamander: Basolateral HCO 3 transport.J. Gen. Physiol. 81:53–94

    Google Scholar 

  • Cemerikic, D., Giebisch, G. 1980. Intracellular sodium activity inNecturus kidney proximal tubule.Fed. Proc. 39:1080

    Google Scholar 

  • Cohen, B., Giebisch, G. 1984. Relationship between potassium conductance and transport in renal tubular epithelium.In: Biological Membranes—Information and Energy Transduction in Biological Membranes. E. Helmreich, editor. Alan R. Liss, New York (in Press)

    Google Scholar 

  • Davis, C. W., Finn, A.L. 1982a. Sodium transport inhibition by amiloride reduces basolateral membrane potassium conductance in tight epithelia.Science 216:525–527

    Google Scholar 

  • Davis, C.W., Finn, A.L. 1982b. Sodium transport effects on the basolateral membrane in toad urinary bladder.J. Gen. Physiol. 80:733–751

    Google Scholar 

  • Eisenberg, R.S., Gage, P.W. 1969. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers.J. Gen. Physiol. 53:279–297

    Google Scholar 

  • Fink, R., Hase, S., Lüttgau, H.Ch., Wettwer, E. 1983. The effect of cellular energy reserves and internal Ca++ on the potassium conductance in the skeletal muscle of the frog.J. Physiol. (London) 336:211–268

    Google Scholar 

  • Fujimoto, M., Kubota, T. 1976. Physiochemical properties of the liquid ion exchanger microelectrode and its application to biological fluids.Jpn. J. Physiol. 26:631–650

    Google Scholar 

  • Giebisch, G., Sullivan, L.P., Whittembury, G. 1973. Relationship between tubular net sodium reabsorption and peritubular potassium uptake in the perfusedNecturus kidney.J. Physiol. (London) 230:51–74

    Google Scholar 

  • Grasset, E., Gunter-Smith, P., Schultz, S.G. 1983. Effects of Na-coupled alanine transport on intracellular K activities and the K conductance of the basolateral membranes ofNecturus small intestine.J. Membrane Biol. 71:89–94

    Google Scholar 

  • Guggino, W.B., London, R., Boulpaep, E.L., Giebisch, G. 1983. Chloride transport across the basolateral cell membrane of theNecturus proximal tubule: Dependence on bicarbonate and sodium.J. Membrane Biol. 71:227–240

    Google Scholar 

  • Guggino, W.B., Windhager, E.E., Boulpaep, E.L., Giebisch, G. 1982. Cellular and paracellular resistances of theNecturus proximal tubule.J. Membrane Biol. 67:143–154

    Google Scholar 

  • Helman, S.I., Nagel, W., Fisher, R.S. 1979. Ouabain on active transepithelial sodium transport in frog skin: Studies with microelectrodes.J. Gen. Physiol. 74:105–127

    Google Scholar 

  • Kimura, G., Spring, K.R. 1980. Ionic conductance of the cell membranes and shunts ofNecturus proximal tubule.Curr. Top. Membr. Transp. 13:265–274

    Google Scholar 

  • Kubota, T., Biagi, B.A., Giebisch, G. 1983a. Intracellular potassium activity measurements in single proximal tubules ofNecturus kidney.J. Membrane Biol. 73:51–60

    Google Scholar 

  • Kubota, T., Biagi, B.A., Giebisch, G. 1983b. Effects of acid-base disturbances on basolateral membrane potential and intracellular potassium activity in the proximal tubule ofNecturus.J. Membrane Biol. 73:61–68

    Google Scholar 

  • Lew, V.L., Ferreira, H.G. 1976. Variable Ca++ sensitivity of a K+-selective channel in intact red cell membranes.Nature (London) 263:336–338

    Google Scholar 

  • Lorenzen, M., Lee, C.O., Windhager, E.E. 1982. Effect of quinidine and ouabain on intracellular calcium (a iCa ) and sodium (a iNa ) ion activities in isolated perfused proximal tubules ofNecturus kidney.Kidney Int. 21:281

    Google Scholar 

  • Matsumura, Y., Cohen, B., Guggino, W.B., Giebisch, G. 1984. Electrical effects of potassium and bicarbonate on proximal tubule cell ofNecturus.J. Membrane Biol. 79:145–152

    Google Scholar 

  • Romero, P.J. 1978. Is the Ca++-sensitive K+ channel under metabolic control in human red cells?Biochim. Biophys. Acta 507:178–181

    Google Scholar 

  • Sackin, H., Boulpaep, E.L. 1981. Isolated perfused salamander proximal tubule. II. Monovalent ion replacement and rheogenic transport.Am. J. Physiol. 241:F540-F555

    Google Scholar 

  • Schultz, S.G. 1980. Basic Principles of Membrane Transport. Cambridge University Press, Cambridge

    Google Scholar 

  • Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through”.Am. J. Physiol. 241:F579-F590

    Google Scholar 

  • Schwarz, W., Passow, H. 1983. Ca++-activated K+ channels in erythrocytes and excitable cells.Annu. Rev. Physiol. 45:359–374

    Google Scholar 

  • Spring, K.R., Giebisch, G. 1977. Kinetics of Na+ transport inNecturus proximal tubule.J. Gen. Physiol. 70:307–328

    Google Scholar 

  • Steels, P.S., Boulpaep, E. 1976. Effect on pH on ionic conductances of the proximal tubular epithelium ofNecturus and the role of buffer permeability.Fed. Proc. 35:465

    Google Scholar 

  • Ussing, H.H., Leaf, A. 1978. Transport across multimembrane systems.In: Membrane Transport in Biology. Vol. III. Transport Across Multi-Membrane Systems. G. Giebisch, editor. pp. 1–26. Springer-Verlag, Berlin

    Google Scholar 

  • White, J.F. 1976. Intracellular potassium activities inAmphiuma small intestine.Am. J. Physiol. 231:1214–1219

    Google Scholar 

  • Windhager, E.E., Taylor, A., Maack, T., Lee, C.O., Lorenzen, M. 1982. Studies on renal tubular function.In: Functional Regulation at the Cellular and Molecular Levels. R.A. Corradino, editor. pp. 299–316. Elsevier North Holland, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of this material has been presented at the 10th International Conference on Biological Membranes (Cohen & Giebisch, 1984).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumura, Y., Cohen, B., Guggino, W.B. et al. Regulation of the basolateral potassium conductance of theNecturus proximal tubule. J. Membrain Biol. 79, 153–161 (1984). https://doi.org/10.1007/BF01872119

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01872119

Key Words

Navigation