Skip to main content
Log in

Validation of the use of the lipophilic thiocyanate anion for the determination of membrane potential in Ehrlich ascites tumor cells

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The utility of the lipophilic anion thiocyanate (SCN+) as a probe for the indirect estimation of the cell membrane potential (V m ) in Ehrlich ascites tumor cells has been evaluated by comparison to direct electrophysiological measurements. SCN accumulation is consisten with first-order uptake into a single kinetically-identifiable cellular compartement, achieving steadystate distribution in 20–30 min at 22°C. The steady-state distribution ratio ([SCN] c /[SCN] e ) in physiological saline is 0.44±0.02. Treatment of the cells with proparanolol (0.13 mM), an activator of Ca2+ dependent K+ channels, reduces the steady-state distribution ratio to 0.19±0.02. Conversely, treatmetn with BACl2 (10 mM), an antagonist of the pathway, increases the SCN distribution ratio to 0.62±0.01. The equilibrium potentials (V SCN ) calculated under these conditions are virtually identical to direct electrophysiological measurements of theV m made under the same conditions. The effect of varing extracellular [K+]([K+] e ) in the presence of constant [Na+] e =100 mM has also been tested. In control cells, elevation of [K+] e from 6 to 60 mM reducesV SCN from −20.6±1.0 to −13.2±1.2 mV. Again, microelectrode measurements give excellent quantitative agreement. Propranolol increases the sensitivity of the cells to varying [K+] e , so that a 10-fold elevation reducesV SCN by approximately 31 mV. BaCl2 greatly reduces this reponse: a 10-fold elevation in [K+] e yielding only a 4-mV rediction inV SCN . It is concluded that the membrane potential of Ehrlich cells can be estimated accurately from SCN distribution measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barty, P. H., Diamond, J. M. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93–122

    Google Scholar 

  • Barts, P. W. J. A., Hoebrichts, J. A., Klaassen, A., Borst-Pauwels, G. W. F. H. 1980. Uptake of the lipophilic cation dibenzyldimethylammonium intoSaccharomyces cerevisiae. Interaction with the thiamine transport system.Biochim. Biophys. Acta 597:125–136

    PubMed  Google Scholar 

  • Catteral, W. A., Ray, R., Morrow, C. S. (1976). Membrane potential dependent binding of scorpion toxin to action potential Na+ ionophore.Proc. Natl. Acad. Sci. USA 73:2682–2686

    PubMed  Google Scholar 

  • Dawson, W. D., Smith, T. C. 1986. Intracellular Na+, K+ and Cl activities in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 860:292–300

    Google Scholar 

  • Dawson, W. D., Smith, T. C. 1986. Energetics of Na+-dependent amino acid co-transport in Ehrlich ascites tumor cells.Biochim. Biophys. Acta 897:5–13

    Google Scholar 

  • Eddy, A. A. 1968. A net gain of sodium ions and a net los of K+ ion accompanying the uptake of glycine by mouse ascites tumour cells in the presence of Na+ cyanide.Biochem. J. 108:195–206

    PubMed  Google Scholar 

  • Eddy, A. A., Mulcaly, M. F., Thomson, P. J. 1967. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors.Biochem. J. 103:863–876

    PubMed  Google Scholar 

  • Geck, P., Heinz, E. 1976. Coupling in secondary transport. Effect of electrical potentials on the kinetics of ion linked cotransport.Biochim. Biophys. Acta 443:49–53

    PubMed  Google Scholar 

  • Geck, P., Pietryzk, C., Burckhardt, B. C., Pfeiffer, B., Heinz, E. 1980. Electrically silent cotransport of Na+, K+ and Cl in Ehrlich cells.Biochim. Biophys. Acta 600:432–437

    PubMed  Google Scholar 

  • Hacking, C., Eddy, A. A. 1981. The accumulation of amino acids by mouse ascites tumor cells. Dependence on but lack of equilibrium with the sodium ion electrochemical gradient.Biochem. J. 194:415–426

    Google Scholar 

  • Heinz, E., Geck, P., Pietryzk, C., Pfeiffer, B. 1977. Electrogenic ion pump as energy dource for active amino acid transport in Ehrlich cells.In: Biochemistry of Membrane Transport. C. Semenza and E. Carafoli, editors. pp. 236–249. Springer-Verlag. Berlin

    Google Scholar 

  • Hemplin, H. G. 1958. Potassium and sodium movements in the Ehrlich mouse ascites tumor cells.J. Gen. Physiol. 41:565–583

    PubMed  Google Scholar 

  • Henius, G. V., Laris, P. C. 1979. The Na+ gradient hypothesis in cytoplasts derived from Ehrlich ascites tumor cells.Biochem. Biophys. Res. Commun. 91:1430–1436

    PubMed  Google Scholar 

  • Hodgkin, A. L., Katz, B. 1949. The effect of sodium ions on the electrical activity of the giant axon of the squid.J. Physiol. (London) 108:37–77

    Google Scholar 

  • Hoffmann, E. K., Laris, P. C. 1974. Determinations of membrane potentials in human andAmphiuma red blood cells by means of a fluorescent proble.J. Physiol. (London) 239: 519–552

    Google Scholar 

  • Hoffmann, E. K., Lambert, I. H. 1983. Amino acid transport and cell volume regulation in Ehrlich ascites tumour cells.J. Physiol. (London) 338:613–625

    Google Scholar 

  • Hoffman, E. K., Simonsen, L. O., Sjoholm, C. 1979. Membrane potential, chloride exchange, and chloride conductance in Ehrilich mouse ascites tumor cells.J. Physiol. (London) 296:61–84

    Google Scholar 

  • Johnstone, R. M., Laris, P. C., Eddy, A. A. 1982. The use of fluorescnet dyes to measure membrane potentials: A critique.J. Cell. Physiol. 112:298–301

    PubMed  Google Scholar 

  • Kramhoft, B., Lambert, I. H., Hoffman, E. K., Jorgensen, F. 1986. Activation of Cl-dependent K transport in Ehrlich ascites tumor cells.Am. J. Physiol. 251: C369–379

    PubMed  Google Scholar 

  • Laris, P. C., Bootman, M., Persharsingh, H. A., Johnstone, R. M. 1978. The influence of cellular amino acids and the Na+, K+ pump on the membrane potential of the Ehrlich ascites tumour cell.Biochim. Biophys. Acta 512:397–414

    PubMed  Google Scholar 

  • Laris, P. C., Pershadsingh, H. A., Johnstone, R. M. 1976. Monitoring membrane potentials in Ehrlich ascites tumour cells by means of a fluorescent dye.Biochim. Biophys. Acta 436:475–488

    PubMed  Google Scholar 

  • Lassen, U. V., Neilsen, A.-M. T., Pape, L., Simonsen, L. O. 1971. The membrane potential of Ehrlich ascites tumor cells.J. Membrane Biol. 6:269–288

    Google Scholar 

  • Levinson, C. 1970. Steady state distribution of phosphate across the membrane of the Ehrlich ascites tumor cell.Biochim. Biophys. Acta 203:317–325

    PubMed  Google Scholar 

  • Levinson, C. 1985. Sodium-dependent ion cotransport in steady state Ehrlich ascites tumor cells.J. Membrane Biol. 87:121–130

    Google Scholar 

  • Lichtshtein, D., Kaback, H. R., Blume, A. J. 1979. Use of a lipophilic cation for determination of membrane potential in neuroblastoma-glioma hybrid cell suspensions.Proc. Natl. Acad. Sci. USA 76:650–654

    PubMed  Google Scholar 

  • Maizels, M., Remington, M., Truscoe, R. (1958). Data for the calculation of the rate coefficients of sodium transfer by mouse ascites tumor cells.J. Physiol. (London) 140:48–60

    Google Scholar 

  • Midgley, M., Thompson, C. L. 1985. The role of mitochondria in the uptake of methyphenylphosphonium ion bySaccharomyces cerevisiae.FEMS Microbiol. Lett. 26:311–315

    Google Scholar 

  • Philo, R. D., Eddy, A. A. 1978. The membrane potential of mouse ascites-tumour cells studied with the fluorescent probe 3.3′-depropyloxaticarbocyanine.Biochem. J. 174:801–810

    PubMed  Google Scholar 

  • Schultz, S. G., Curran, P. F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637–718

    PubMed  Google Scholar 

  • Schwartz, W., Passow, H. 1983. Ca2+-activated K+ channels in erythrocytes and excitable cells.Annu. Rev. Physiol. 45:359–374

    Google Scholar 

  • Smith, T. C. 1982. The use of fluorescent dyes to measure membrane potentials: A response.J. Cell. Physiol. 112, 302–305

    PubMed  Google Scholar 

  • Smith, T. C., Mikiten, T. M., Levinson, C. (1972. The effect of multivalent cations on the membrane potential of the Ehrlich ascites tumor cell.J. Cell. Physiol. 79:117–125

    PubMed  Google Scholar 

  • Smith, T. C., Robinson, S. C. 1981a. The membrane potential of Ehrlich ascites tumor cells: An evaluation of the null point method.J. Cell. Physiol. 106:399–406

    PubMed  Google Scholar 

  • Smith, T. C., Robinson, S. C. 1981b. Variable coupling of active Na+=K+ transport in Ehrlich ascites tumor cells: Regulation by external Na+ and K+.J. Cell. Physiol. 106:407–418

    Google Scholar 

  • Smith, T. C., Vernon, K. D. 1979. Correlation of teheffect of Ca2+ on Na+ and K+ permeability and membrane potential of Ehrlich ascites tumor cells.J. Cell. Physiol. 98:359–370

    PubMed  Google Scholar 

  • Solomon, A. K. 1949. Equations for tracer experiments.J. Clin. Inverst.28:1297–1307

    Google Scholar 

  • Valdeolmillos, M., Garcia-Sancho, J., Herreos, B. 1986. Differential effects of tranmembrane potential on tow Na+-dependent tranport systems for neutral amino acids.Biochim. Biophys. Acta 858:181–187

    PubMed  Google Scholar 

  • Wiener, E., Dubyak, G., Scarpa, A. 1986. Na+/H+ exchange in Ehrlich ascites tumor cells. Regulation by extracellular ATP and 12-O-tetradeconylphorbol 13-acetate.J. Biol. Chem. 261:4529–4534

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, T.C., Robinson, S.C. Validation of the use of the lipophilic thiocyanate anion for the determination of membrane potential in Ehrlich ascites tumor cells. J. Membrain Biol. 107, 169–178 (1989). https://doi.org/10.1007/BF01871722

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871722

Key Words

Navigation