Skip to main content
Log in

Sodium-dependent modulation of the renal Na−K-ATPase: Influence of mineralocorticoids on the cortical collecting duct

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Mineralocorticoids play a major role in the regulation of sodium transport in a variety of tissues, including the cortical collecting duct (CCD) of the mammalian nephron. To assess, in part, the underlying mechanism(s) of this control, the present studies were designed to evaluate, first, the influence of mineralocorticoids on the Na−K-ATPase activity in the rabbit CCD and, secondly, a possible role of sodium entry into the cell at the luminal border on the regulation of the Na−K-ATPase. In the first series of studies, rabbits were maintained on a low sodium diet which raised serum aldosterone levels from 16 to 70 ng/dl after 3–4 days, with further elevations being expressed with treatment for two weeks or more. In CCDs isolated from these animals, the Na−K-ATPase increased from 13 to 40 pmol ADP min−1 mm−1 after 3–4 days on the low sodium regimen, but then declined, returning to control values after approximately 2 weeks. This decline in activity was preceded by a decrease in the Na+ concentration of the urine to low levels and hence, likely coincided with a decreased delivery of sodium to, and sodium entry into the cells of, the CCD. If dietary manipulations were used to maintain a high delivery of sodium to the CCD in the animal, elevation of plasma mineralocorticoid levels by treatment with deoxycorticosterone acetate (DOCA) caused a similar elevation in the Na−K-ATPase activity after 3–4 days, which did not decline with continued treatment for up to 2 weeks. Furthermore, it was observed that mineralocorticoids only exerted their effect on the Na−K-ATPase after a latent period of 1 day, well after sodium excretion had fallen, indicating that sodium entry into the CCD cells was already stimulated. If animals were simultaneously treated with DOCA and the sodium channel blocker amiloride for 3–4 days, the effects on the Na−K-ATPase were markedly reduced, whereas amiloride treatment alone had no effect on the enzyme activity. Since others have shown that mineralocorticoids induce synthesis of the Na−K-ATPase subunits in toad bladder cells in an amiloride-insensitive manner, sodium must be exerting its effect on a process after translation. It is concluded that the initial effect of mineralocorticoids in the CCD is on sodium entry with a delayed induction of the Na−K-ATPase, which is regulated by Na-dependent modulation of a posttranslational process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boardman, L., Huett, M., Lamb, J.F., Newton, J.P., Polson, J.M. 1974. Evidence for the genetic control of the sodium pump density in Hela cells.J. Physiol. (London) 241:771–794

    Google Scholar 

  • Charney, A.N., Silva, P., Besarab, A., Epstein, F.H. 1974. Separate effects of aldosterone, DOCA, and methylprednisolone on renal Na−K-ATPase.Am. J. Physiol. 227:345–350

    PubMed  Google Scholar 

  • Civan, M.M., Hoffman, R.E. 1971. Effect of aldosterone on electrical resistance of toad bladder.Am. J. Physiol. 220:324–328

    PubMed  Google Scholar 

  • Cochrane, D.E., Douglas, W.W., Mouri, T., Nakazato, Y. 1975. Calcium and stimulus-secretion coupling in the adrenal medulla: Contrasting stimulating effects of the ionophores X-537A and A23187 on catecholamine output.J. Physiol. (London) 252:363–378

    Google Scholar 

  • Cook, J.S., Tate, E.H., Shaffer, C. 1982. Uptake of [3H] ouabain from the cell surface into the lysosomal compartment of Hela cells.J. Cell Physiol. 110:84–92

    PubMed  Google Scholar 

  • Crabbé, J. 1963. Site of action of aldosterone on the bladder of the toad.Nature (London) 200:787–788

    Google Scholar 

  • Doucet, A., Katz, A.I. 1980. Renal potassium adaptation: Na−K-ATPase activity along the nephron after chronic potassium loading.Am. J. Physiol. 238:F380-F386

    PubMed  Google Scholar 

  • Doucet, A., Katz, A.I. 1981. Short-term effect of aldosterone on Na−K-ATPase in single nephron segments.Am. J. Physiol. 241:F273-F278

    Google Scholar 

  • Edelman, I.S. 1981. Receptors and effectors in hormone action on the kidney.Am. J. Physiol. 241:F333-F339

    PubMed  Google Scholar 

  • el-Mernissi, G., Doucet, A. 1983. Short-term effects of aldosterone and dexamethasone on Na−K-ATPase along the rabbit nephron.Pfluegers Arch. 399:147–151

    Google Scholar 

  • el-Mernissi, G., Doucet, A. 1984. Stimulation of Na−K-ATPase in the rat collecting tubule by two diuretics: Furosemide and amiloride.Am. J. Physiol. 247:F485-F490

    PubMed  Google Scholar 

  • Garg, L.C., Knepper, M.A., Burg, M.B. 1981. Mineralocorticoid effects on Na−K-ATPase in individual nephron segments.Am. J. Physiol. 240:F536-F544

    Google Scholar 

  • Garg, L.C., Mackie, S., Tisher, C.C. 1982. Effect of low potassium-diet on Na−K-ATPase in rat nephron segments.Pfluegers Arch. 394:113–117

    Google Scholar 

  • Geering, K., Girardet, M., Bron, C., Kraehenbuhl, J.-P., Rossier, B.C. 1982. Hormonal regulation of (Na+, K+)-ATPase biosynthesis in the toad bladder.J. Biol. Chem. 257:10338–10343

    PubMed  Google Scholar 

  • Handler, J.S., Preston, A.S., Perkins, F.M., Matsumura, M., Johnson, J.P., Watlington, C.O. 1981. The effect of adrenal steroid hormones on epithelia formed in culture by A6 cells.Ann. N.Y. Acad. Sci. 372:442–454

    PubMed  Google Scholar 

  • Hendler, E.D., Torretti, J., Kupor, L., Epstein, F.H. 1972. Effects of adrenalectomy and hormone replacement on Na−K-ATPase in renal tissue.Am. J. Physiol. 222:754–760

    PubMed  Google Scholar 

  • Hill, J.H., Cortas, N., Walser, M. 1973. Aldosterone action and sodium- and potassium-activated adenosine triphosphatase in toad bladder.J. Clin. Invest. 52:185–189

    PubMed  Google Scholar 

  • Horster, M., Schmid, H., Schmidt, U. 1980. Aldosteronein vitro restores nephron Na−K-ATPase of distal segments from adrenalectomized rabbits.Pfluegers Arch. 384:203–206

    Google Scholar 

  • Jørgensen, P.L. 1968. Regulation of the (Na++K+)-activated ATP hydrolyzing enzyme system in rat kidney: II. The effect of adrenalectomy and the supply of sodium on the enzyme system.Biochim. Biophys. Acta 151:212–224

    PubMed  Google Scholar 

  • Jørgensen, P.L. 1969. Regulation of the (Na++K+)-activated ATP hydrolyzing enzyme system in rat kidney: I. The effect of aldosterone on the activity in kidneys of adrenalectomized rats.Biochim. Biophys. Acta 192:326–334

    PubMed  Google Scholar 

  • Jørgensen, P.L. 1972. The role of aldosterone in the regulation of (Na++K+)-ATPase in rat kidney.J. Steroid Biochem. 3:181–191

    PubMed  Google Scholar 

  • Jørgensen, P.L. 1980. Sodium and potassium ion pump in kidney tubules.Physiol. Rev. 60:864–917

    PubMed  Google Scholar 

  • Kaissling, B. 1982. Structural aspects of adaptive changes in renal electrolyte excretion.Am. J. Physiol. 242:F211-F226

    Google Scholar 

  • Kaissling, B., LeHir, M. 1982. Distal tubular segments of the rabbit kidney after adaptation to altered Na-and K-intake: I. Structural changes.Cell Tissue Res. 224:469–492

    PubMed  Google Scholar 

  • Kanno, T., Saito, A., Sato Y. 1977. Stimulus-secretion coupling in pancreatic acinar cells: Influences of external sodium and calcium on responses to cholecystokinin-pancreozymin and ionophore A23187.J. Physiol. (London) 270:9–28

    Google Scholar 

  • Katz, A.I. 1982. Renal Na−K-ATPase: Its role in tubular sodium and potassium transport.Am. J. Physiol. 242:F207-F219

    PubMed  Google Scholar 

  • Koeppen, B.M., Biagi, B.A., Giebisch, G.H. 1983. Intracellular microelectrode characterization of the rabbit cortical collecting duct.Am. J. Physiol. 244:F35-F47

    Google Scholar 

  • LeHir, M., Kaissling, B., Dubach, U.C. 1982. Distal tubular segments of the rabbit kidney after adaptation to altered Na- and K-intake: II. Changes in Na−K-ATPase activity.Cell Tissue Res. 224:493–504

    PubMed  Google Scholar 

  • Lo, C.-S., August, T.R., Liberman, U.A., Edelman, I.S. 1976. Dependence of renal (Na++K+)-adeonosine triphosphatase activity on thyroid status.J. Biol. Chem. 251:7826–7833

    Google Scholar 

  • Lo, C.-S., Edelman, I.S. 1976. Effect of triiodothyronine on the synthesis and degradation of renal cortical (Na++K+)-adenosine triphosphatase.J. Biol. Chem. 251:7834–7840

    Google Scholar 

  • Lo, C.-S., Lo, T.N. 1979. Time course of the renal response to triiodothyronine in the rat.Am. J. Physiol. 236:F9-F13

    PubMed  Google Scholar 

  • Lowry, O.H., Passonneau, J.V. 1972. Flexible System of Enzymatic Analysis. Academic Press, New York

    Google Scholar 

  • Marver, D., Kokko, J.P. 1983. Renal target sites and the mechanism of action of aldosterone.Min Electrol. Metab. 9:1–18

    Google Scholar 

  • Mujais, S.K., Chekal, M.A., Jones, W.J., Hayslett, J.P., Katz, A.I. 1984. Regulation of renal Na−K-ATPase in the rat: Role of the natural mineralo- and glucocorticoid hormones.J. Clin. Invest. 73:13–19

    PubMed  Google Scholar 

  • Natke, E., Stoner, L.C. 1982. Na+ transport properties of the peritubular membrane of cortical collecting tubule.Am. J. Physiol. 242:F664-F671

    Google Scholar 

  • O'Neil, R.G., Dubinsky, W.P. 1983. Na-dependent mineralocorticoid regulation of cortical collecting duct (CCD) Na−K-ATPase.Fed. Proc. 42:475

    Google Scholar 

  • O'Neil, R.G., Dubinsky, W.P. 1984. Micromethodology for measuring ATPase activity in renal tubules: Mineralocorticoid influence.Am. J. Physiol. 247:C314-C320

    PubMed  Google Scholar 

  • O'Neil, R.G., Hayhurst, R.A. 1984. Time course of mineralocorticoid effects on the renal cortical collecting duct Na−K-ATPase.In: Proceedings of the 8th International Biophysics Congress. 29 July–4 August, 1984. Bristol. p. 296

  • O'Neil, R.G., Helman, S.I. 1977. Transport characteristics of renal collecting tubules: Influences of DOCA and diet.Am. J. Physiol. 233:F544-F558

    PubMed  Google Scholar 

  • Palmer, L.G., Li, J.H.-Y., Lindemann, B., Edelman, I.S. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder.J. Membrane Biol. 64:91–102

    Google Scholar 

  • Park, C.S., Edelman, I.S. 1984a. Effect of aldosterone on abundance and phosphorylation kinetics of Na−K-ATPase of toad urinary bladder.Am. J. Physiol. 246:F509-F516

    PubMed  Google Scholar 

  • Park, C.S., Edelman, I.S. 1984b. Dual action of aldosterone on toad bladder: Na+ permeability and Na+ pump modulation.Am. J. Physiol. 246:F517-F525

    PubMed  Google Scholar 

  • Petty, K.J., Kokko, J.P., Marver, D. 1981. Secondary effect of aldosterone on Na−K-ATPase activity in the rabbit cortical collecting tubule.J. Clin. Invest. 68:1514–1521

    PubMed  Google Scholar 

  • Pollack, L.R., Tate, E.H., Cook, J.S. 1981. Turnover and regulation of Na−K-ATPase in HeLa cells.Am. J. Physiol. 241:C173-C183

    PubMed  Google Scholar 

  • Poulsen, J.H., Williams, J.A. 1977. Effects of the calcium ionophore A23187 on pancreatic acinar cell membrane potentials and amylase release.J. Physiol. (London) 264:323–339

    Google Scholar 

  • Rastegar, A., Biemesderfer, D., Kashgarian, M., Hayslett, J.P. 1980. Changes in membrane surfaces of collecting duct cells in potassium adaptation.Kidney Int. 18:293–301

    PubMed  Google Scholar 

  • Rossier, B.C. 1984. Biosynthesis of Na+, K+-ATPase in amphibian epithelial cells.In: Molecular Approaches to Epithelial Transport. J.B. Wade and S.A. Lewis, editors. pp. 125–145. Academic Press, New York

    Google Scholar 

  • Sansom, S.C., O'Neil, R.G. 1985. Mineralocorticoid regulation of cell membrane Na and K pathways in rabbit cortical collecting dust (CCD).Kidney Int. 27:319

    Google Scholar 

  • Schwartz, G.J., Burg, M.B. 1978. Mineralocorticoid effects on cation transport by cortical collecting tubulesin vitro.Am. J. Physiol. 235:F576-F585

    PubMed  Google Scholar 

  • Silva, P., Hayslett, J.P., Epstein, F.H. 1973. The role of Na−K-activated adenosine triphosphatase in potassium adaptation: Stimulation of enzymatic activity by potassium loading.J. Clin. Invest. 52:2665–2671

    PubMed  Google Scholar 

  • Spooner, P.M., Edelman, I.S. 1975. Further studies on the effect of aldosterone on electrical resistance of toad bladder.Biochim. Biophys. Acta 406:304–314

    PubMed  Google Scholar 

  • Stanton, B.A. 1985. Role of adrenal hormones in regulating distal nephron structure and ion transport.Fed. Proc. (in press)

  • Stanton, B.A., Biemesderfer, D., Wade, J.B., Giebisch, G. 1981. Structural and functional study of the rat distal nephron: Effects of potassium adaptation and depletion.Kidney Int. 19:36–48

    PubMed  Google Scholar 

  • Stekhoven, F.S., Bonting, S.L. 1981. Transport adenosine triphosphatases: Properties and functions.Physiol. Rev. 61:1–76

    PubMed  Google Scholar 

  • Stokes, J.B. 1981. Potassium secretion by cortical collecting tubule: Relation to sodium absorption, luminal sodium concentration, and transepithelial voltage.Am. J. Physiol. 241:F395-F402

    PubMed  Google Scholar 

  • Wade, J.B., O'Neil, R.G., Pryor, J.L., Boulpaep, E.L. 1979. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones.J. Cell Biol. 81:439–445

    PubMed  Google Scholar 

  • Westenfelder, C., Arevalo, G.J., Baranowski, R.L., Kurtzman, N.A., Katz, A.I. 1977. Relationship between mineralocorticoids and renal Na+−K+-ATPase: Sodium reabsorption.Am. J. Physiol. 233:F593-F599

    PubMed  Google Scholar 

  • Williams, J.A. 1975. Na+ dependence ofin vitro pancreatic amylase release.Am. J. Physiol. 229:1023–1026

    PubMed  Google Scholar 

  • Wingo, C.S., Seldin, P.W., Kokko, J.P. 1982. Dietary modulation of active potassium secretion in the cortical collecting tubule of adrenalectomized rabbits.J. Clin. Invest. 70:579–586

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Neil, R.G., Hayhurst, R.A. Sodium-dependent modulation of the renal Na−K-ATPase: Influence of mineralocorticoids on the cortical collecting duct. J. Membrain Biol. 85, 169–179 (1985). https://doi.org/10.1007/BF01871269

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871269

Key Words

Navigation