Skip to main content
Log in

Cellular and transepithelial responses of goldfish intestinal epithelium to chloride substitutions

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

In goldfish intestine chloride was substituted by large inorganic anions (gluconate or glucuronate) either mucosally, serosally or bilaterally. Changes in intracellular activities of chloride (a i Cl), sodium (a i Na+) and potassium (a i K+), pHi, relative volume, membrane and transepithelial potentials, transepithelial resistance and voltage divider ratio were measured. Control values were:a i Cl=35 meq/liter, a i Na+=11 meq/liter and a i K+=95 meq/liter. During bilateral substitution the latter two did not change while a i Cl dropped to virtually zero.

Mucosal membrane potentials (ψms) were: control,-53 mV; serosal substitution,-51 mV; bilateral substitution,-66 mV; while during mucosal substitution a transient depolarization occurred and the final steady state ψms was-66 mV.

During control and bilateral substitution the transepithelial potentials (ψms) did not differ from zero. During unilateral substitutions ψms was small, in the order of magnitude of the errors in the liquid junction potentials near the measuring salt bridges.

During bilateral substitution pH i increased 0.4 pH units. Cellular volume decreased during mucosal substitution to 88% in 40 min; after serosal substitution it transiently increased, but the new steady-state value was not significantly above its control value.

Three minutes after mucosal substitution ana i Cl of approx. 10 meq/liter was measured.

Chemical concentrations of Na, K and Cl were determined under control conditions and bilateral substitution. Cl concentrations were also measured as a function of time after unilateral substitutions.

The data indicate an electrically silent chloride influx mechanism in the brush border membrane and an electrodiffusional chloride efflux in the basolateral membrane. A substantial bicarbonate permeability is present in the basolateral membrane. The results are in agreement with the observed changes in membrane resistances, volume changes and pH changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albus, H., Bakker, R., Siegenbeek van Heukelom, J. 1983. Circuit analysis of membrane potentials changes due to electrogenic sodium-dependent sugar transport in goldfish intestinal epithelium.Pfluegers Arch. 398:1–9

    Google Scholar 

  2. Armstrong, W.McD., Bixenman, W.R., Frey, K.F., Garcia-Diaz, J.F., O'Regan, M.G., Owens, J.L. 1979. Energetics of coupled Na+ and Cl entry into epithelial cells of bullfrog small intestine.Biochim. Biophys. Acta 551:207–219

    Google Scholar 

  3. Armstrong, W.McD., Garcia-Diaz, J.F. 1980. Ion-selective microelectrodes: Theory and technique.Fed. Proc. 39:2851–2859

    Google Scholar 

  4. Baerentsen, H.J., Christensen, O., Thomsen, P.G., Zeuthen, T. 1982. Steady states and the effects of ouabain in theNecturus gallbladder epithelium: A model analysis.J. Membrane Biol. 68:215–225

    Google Scholar 

  5. Baerentsen, H., Giraldez, F., Zeuthen, T. 1983. Influx mechanisms for Na+ and Cl across the brush border membrane of leaky epithelia: A model and microelectrode study.J. Membrane Biol. 75:205–218

    Google Scholar 

  6. Bakker, R., Dekker, K., Zuidema, T., Groot, J.A. 1982. Transepithelial Cl-transport in goldfishCarassius auratus intestinal mucosa and the effect of theophylline on fluxes and electrophysiology. 4th Conference of the European Society for Comparative Physiology and Biochemistry, Bielefeld (FRG) September 8–11, 1982

  7. Bakker, R., Groot, J.A. 1984. cAMP-mediated effects of ouabain and theophylline on paracellular ion selectivity.Am. J. Physiol. 246:G213-G217

    Google Scholar 

  8. Barry, P.H., Diamond, J.M. 1970. Junction potentials, electrode standard potentials, and other problems in interpreting electrical properties of membranes.J. Membrane Biol. 3:93–122

    Google Scholar 

  9. Burckhardt, B.C., Frömter, E. 1981. Bicarbonate and hydroxylion permeability of the peritubular cell membrane of rat renal proximal tubular cells.Pfluegers Arch. 389:R40

    Google Scholar 

  10. Christoffersen, G.R.J., Skibsted, L.H. 1975. Calcium ion activity in physiological solutions: Influence of anions substituted for chloride.Comp. Biochem. Physiol. 52A:317–322

    Google Scholar 

  11. Cremaschi, D., James, P.S., Meyer, G., Rossetti, C., Smith, M.W. 1984. Developmental changes in intra-enterocyte cation activities in hamster terminal ileum.J. Physiol. (London) 354:363–373

    Google Scholar 

  12. Dagostino, M., Lee, C.O. 1982. Neutral carrier Na+-and Ca2+-selective microelectrodes for intracellular application.Biophys. J. 40:199–207

    Google Scholar 

  13. Duffey, M.E., Turnheim, K., Frizzell, R.A., Schultz, S.G. 1979. Intracellular chloride activities in rabbit gallbladder: Direct evidence for the role of the sodium-gradient in energizing “Uphill” chloride transport.J. Membrane Biol. 42:229–245

    Google Scholar 

  14. Ellory, J.C., Ramos, M., Zeuthen, T. 1979. Cl-accumulation in the plaice intestinal epithelium.J. Physiol. (London) 287:12P

    Google Scholar 

  15. Field, M., Karnaky, K.J., Smith, P.L., Bolton, J.E., Kinter, W.B. 1978. Ion transport across the isolated intestinal mucosa of the winter flounder,Pseudopleuronectes americanus: I. Functional and structural properties of cellular and paracellular pathways for Na and Cl.J. Membrane Biol. 41:265–293

    Google Scholar 

  16. Fisher, R.S. 1984. Chloride movement across basolateral membrane ofNecturus gallbladder epithelium.Am. J. Physiol. 247:C495-C500

    Google Scholar 

  17. Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8

    Google Scholar 

  18. Frömter, E. 1979. Solute transport across epithelia: What can we learn from micropuncture studies on kidney tubules?J. Physiol. (London) 288:1–31

    Google Scholar 

  19. Garcia-Diaz, J.F., O'Doherty, J., Armstrong, W.McD. 1978. Potential profile, K+ and Na+ activities inNecturus small intestine.Physiologist 21:41

    Google Scholar 

  20. Giraldez, F. 1984. Active sodium transport and fluid secretion in the gall-bladder epithelium ofNecturus.J. Physiol. (London) 348:431–455

    Google Scholar 

  21. Groot, J.A. 1981. Cell volume regulation in goldfish intestinal mucosa.Pfluegers Arch. 392:57–66

    Google Scholar 

  22. Groot, J.A. 1982. Aspects of the Physiology of the Intestinal Mucosa of the Goldfish (Carassius auratus L). MultiCopy, Amsterdam

    Google Scholar 

  23. Groot, J.A., Albus, H., Siegenbeek van Heukelom, J. 1979. A mechanistic explanation of the effect of potassium on goldfish intestinal transport.Pfluegers Arch. 379:1–9

    Google Scholar 

  24. Groot, J.A., Dekker, K., Van Riel, J.W., Zuidema, T. 1982. Intracellular ion concentrations and pH of stripped mucosa of goldfish (Carassius auratus) intestine in relation to Cl transport. 4th conference of the European Society for Comparative Physiology and Biochemistry, Bielefeld (FRG), September 8–11, 1982

  25. Guggino, W.B., Boulpaep, E.L., Giebisch, G. 1982. Electrical properties of chloride transport across theNecturus proximal tubule.J. Membrane Biol. 65:185–196

    Google Scholar 

  26. Halm, D., Krasny, E., Frizzell, R.A. 1982. Apical membrane potassium conductance in flounder intestine: Relation to chloride absorption.Bull. Mount Desert Island Biol. Lab. 21:88–93

    Google Scholar 

  27. Henin, S., Smith, M.W. 1976. Electrical properties of pig colonic mucosa measured during early post-natal development.J. Physiol. (London) 262:169–187

    Google Scholar 

  28. Hudson, R.L., Schultz, S.G. 1984. Sodium-coupled sugar transport: Effects on intracellular sodium activities and sodium-pump activity.Science 224:1237–1239

    Google Scholar 

  29. Jacquez, J.A., Schultz, S.G. 1974. A general relation between membrane potential, ion activities and pump fluxes for symmetric cells in a steady state.Math. Biosci. 20:19–26

    Google Scholar 

  30. Katz, U., Lau, K.R., Ramos, M.M.P., Ellory, J.C. 1982. Thiocyanate transport across fish intestine (Pleuronectes platessa).J. Membrane Biol. 66:9–14

    Google Scholar 

  31. Laprade, R., Cardinal, J. 1983. Liquid junctions and isolated proximal tubule transepithelial potentials.Am. J. Physiol. 244:F304-F319

    Google Scholar 

  32. Lee, C.O., Armstrong, W.McD. 1972. Activities of sodium and potassium ions in epithelial cells of small intestine.Science 175:1261–1264

    Google Scholar 

  33. Liedtke, C.M., Hopfer, U. 1982. Mechanism of Cl translocation across small intestinal brush-border membrane: II. Demonstration of Cl−OH exchange and Cl conductance.Am. J. Physiol. 242:G272-G280

    Google Scholar 

  34. Meier, P.C., Lanter, F., Ammann, D., Steiner, R.A., Simon, W. 1982. Applicability of available ion-selective liquid membrane microelectrodes to intracellular ion activity measurements.Pfluegers Arch. 393:23–30

    Google Scholar 

  35. Nellans, H.N., Frizzell, R.A., Schultz, S.G. 1973. Coupled sodium-chloride influx across the brushborder of rabbit ileum.Am. J. Physiol. 225:467–475

    Google Scholar 

  36. Okada, Y., Irimajuri, A., Inouye, A. 1976. Intracellular ion concentrations of epithelial cells in rat intestine. Effects of external K and uphill transports of glucose and glycine.Jpn. J. Physiol. 26:427–440

    Google Scholar 

  37. Okada, Y., Sato, T., Inouye, A. 1975. Effects of potassium ions and sodium ions on membrane potential of epithelial cells in rat duodenum.Biochim. Biophys. Acta 413:104–115

    Google Scholar 

  38. Os, C.H. van, Wiedner, G., Wright, E.M. 1979. Volume flows across gallbladder epithelium induced by small hydrostatic and osmotic gradients.J. Membrane Biol. 49:1–20

    Google Scholar 

  39. Reuss, L. 1979. Electrical properties of cellular transepithelial pathway inNecturus gallbladder: III. Ionic permeability of the basolateral cell membrane.J. Membrane Biol. 47:239–259

    Google Scholar 

  40. Reuss, L. 1983. Basolateral co-transport in NaCl-absorbing epithelium.Nature (London) 305:723–726

    Google Scholar 

  41. Reuss, L., Cheung, L.Y., Grady, T.P. 1982. Mechanisms of cation permeation across apical cell membrane ofNecturus gallbladder: Effects of luminal pH and divalent cations on K+ and Na+ permeability.J. Membrane Biol. 59:211–224

    Google Scholar 

  42. Reuss, L., Weinman, S.A. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium.J. Membrane Biol. 49:345–362

    Google Scholar 

  43. Rose, R.C., Schultz, S.G. 1971. Studies on the electrical potential profile across rabbit ileum: Effects of sugars and amino acids on transmural and transmucosal electrical potential differences.J. Gen. Physiol 57:639–663

    Google Scholar 

  44. Sackin, H., Boulpaep, E.L. 1981. Isolated perfused salamander proximal tubule: II. Monovalent ion replacement and rheogenic transport.Am. J. Physiol. 241:F540-F555

    Google Scholar 

  45. Schultz, S.G. 1980. Basic principles of membrane transport.In: IUPAB Biophysics Series 1, Cambridge University Press, Cambridge-London-New York-New Rochelle-Melbourne-Sydney

    Google Scholar 

  46. Shindo, T., Spring, K.R. 1981. Chloride movement across the basolateral membrane of proximal tubule cells.J. Membrane Biol. 58:35–42

    Google Scholar 

  47. Siegenbeek van Heukelom, J. 1978. The electrical characteristics of the absorptive goldfish intestinal epithelium.Gastroent. Clin. Biol. 2:329

    Google Scholar 

  48. Siegenbeek van Heukelom, J., Van den Ham, M.D., Albus, H., Groot, J.A. 1981. Microscopical determination of the filtration permeability of the mucosal surface of the goldfish intestinal epithelium.J. Membrane Biol. 63:31–39

    Google Scholar 

  49. Smith, P.L., Welsh, M.J., Stewart, C.P., Frizzell, R.A., Orellana, S.A., Field, M. 1981. Chloride absorption by the intestine of the winter flounderPseudopleuronectes americanus: Mechanism of inhibition by reduced pH.Bull. Mount Desert Island Biol. Lab. 20:96–101

    Google Scholar 

  50. Spring, K.R., Giebisch, G. 1977. Tracer Na fluxes inNecturus proximal tubule.Am. J. Physiol. 232:F461-F470

    Google Scholar 

  51. Spring, K.R., Kimura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233–254

    Google Scholar 

  52. Turnberg, L.A., Bieberdorf, F.A., Morowski, S.G., Fordtran, J.S. 1970. Interrelationship of chloride, bicarbonate, sodium and hydrogen transport in human ileum.J. Clin. Invest. 49:557–567

    Google Scholar 

  53. Waddell, W.J., Butler, T.C. 1959. Calculation of the intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO). Application to skeletal muscle of the dog.J. Clin. Invest. 38:720–729

    Google Scholar 

  54. White, J.F. 1976. Intracellular potassium activities inAmphiuma small intestine.Am. J. Physiol. 231:1214–1219

    Google Scholar 

  55. White, J.F. 1977. Activity of chloride in absorptive cells ofAmphiuma small intestine.Am. J. Physiol. 232:E553-E559

    Google Scholar 

  56. White, J.F. 1980. Bicarbonate-dependent chloride absorption in small intestine: Ion fluxes and intracellular chloride activities.J. Membrane Biol. 53:95–107

    Google Scholar 

  57. Zeuthen, T. 1981. On the effects of amphotericin B and ouabain on the electrical potentials ofNecturus gallbladder.J. Membrane Biol. 60:167–169

    Google Scholar 

  58. Zeuthen, T., Monge, C. 1976. Electrical potentials and ion activities in the epithelial cell layer of the rabbit ileum in vivo.In: Ion and Enzyme Electrodes in Biology and Medicine. M. Kessler et al., editors. p. 345. Urban and Schwar zenberg, Munich

    Google Scholar 

  59. Zeuthen, T., Ramos, M., Ellory, J.C. 1978. Inhibition of active chloride transport by piretanide.Nature (London) 273:678–680

    Google Scholar 

  60. Zuidema, T., Dekker, K., Siegenbeek van Heukelom, J. 1985. The influence of organic counterions on junction potentials and measured membrane potentials.Bioelectrochem. Bioenerg. (in press)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuidema, T., van Riel, J.W. & van Heukelom, J.S. Cellular and transepithelial responses of goldfish intestinal epithelium to chloride substitutions. J. Membrain Biol. 88, 293–304 (1985). https://doi.org/10.1007/BF01871093

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871093

Key Words

Navigation