Skip to main content
Log in

Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: Modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effect of extracellular and intracellular Na+ (Na + o , Na + i ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 1∶1 (Na+−K+) cotransport, and modeii) a Na + o -independent 1∶1 K + o /K + i exchange requiring Na + i which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb + o /K + i exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na + i (pH 7.4). Na+−K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+−Rb+ cotransport exhibits a substrate inhibition at high Rb + o . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb + o of Na+−K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na + o and Na + i . This pathway differs in many properties from the basal, Na + o -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na + o -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K + o <Na + o <Li + o <Mg 2+ o reduce furosemide-resistant Rb+ inward leakage relative to choline + o .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adragna, N.C., Tosteson, D.C. 1984. Effect of volume changes on ouabain-insensitive net outward cation movements in human red cells.J. Membrane Biol. 78:43–52

    Google Scholar 

  2. Berkowitz, L.R., Orringer, E.P. 1985. Chloride-dependent K transport mediates cell volume regulation in hemoglobin CC red blood cells.J. Gen. Physiol. 86:40a-41a (abstract)

    Google Scholar 

  3. Brugnara, C., Canessa, M., Cusi, D., Tosteson, D.C. 1986. Furosemide-sensitive Na and K fluxes in human red cells. Net uphill Na extrusion and equilibrium properties.J. Gen. Physiol. 87:91–112

    Google Scholar 

  4. Canessa, M., Bize, I., Adragna, N., Tosteson, D.C. 1982. Cotransport of lithium and potassium in human red cells.J. Gen. Physiol. 80:149–168

    Google Scholar 

  5. Canessa, M., Brugnara, C., Cusi, D., Tosteson, D.C. 1986. Modes of operation and variable stoichiometry of the furosemide-sensitive Na and K fluxes in human red cells.J. Gen. Physiol. 87:113–142

    Google Scholar 

  6. Cass, A., Dalmark, M. 1973. Equilibrium dialysis of ions in nystatin-treated red cells.Nature New Biol. 24:47–49

    Google Scholar 

  7. Chipperfield, A.R. 1980. An effect of chloride on (Na+K) cotransport in human red blood cells.Nature (London) 286:281–282

    Google Scholar 

  8. Chipperfield, A.R. 1985. Influence of loop diuretics and anions on passive potassium influx into human red cells.J. Physiol. (London) 369:61–77

    Google Scholar 

  9. Chipperfield, A.R., Mangat, D.S. 1986. (Na+K) co-transport in human red cells increases with age.J. Physiol. (London) 380:67P (abstract)

    Google Scholar 

  10. Cleland, W.W. 1970. Steady state kinetics.In: The Enzymes. Kinetics and Mechanisms, 3rd edition. P.D. Boyer, editor. Vol. 11, pp. 1–65. Academic, New York

    Google Scholar 

  11. Duhm, J. 1982. Lithium transport pathways in erythrocytes.In: Basic Mechanisms in the Action of Lithium. H.M. Emrich, J.B. Aldenhoff and H.D. Lux, editors. pp. 1–20. Excerpta Medica, Amsterdam

    Google Scholar 

  12. Duhm, J. 1987. Modes of furosemide-sensitive K (Rb) transport in human (and rat) erythrocytes. Effects of Na o , Na i , K i , cell volume and NEM.In: Physiology and Biophysics of Chloride and Cation Cotransport Across Cell Membranes. Symposium Summary.Fed. Proc. (in press)

  13. Duhm, J., Becker, B.F. 1979. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes.J. Membrane Biol. 51:263–286

    Google Scholar 

  14. Duhm, J., Göbel, B.O. 1982. Sodium-lithium exchange and sodium-potassium cotransport in human-erythrocytes. Part 1: Evaluation of a simple uptake test to assess the activity of the two transport systems.Hypertension 4:468–476

    Google Scholar 

  15. Duhm, J., Göbel, B.O. 1984. Na+−K+ transport and volume of rat erythrocytes under dietary K+ deficiency.Am. J. Physiol. 246:C20-C29

    Google Scholar 

  16. Duhm, J., Göbel, B.O. 1984. Role of the furosemide-sensitive Na+/K+ transport system in determining the steadystate Na+ and K+ content and volume of human erythrocytesin vitro andin vivo.J. Membrane Biol. 77:243–254

    Google Scholar 

  17. Duhm, J., Göbel, B.O. 1984. Chloride-dependent, furosemide-sensitive K+ transport in human and rat erythrocytes. Dependence on external Na+, internal Na+, and cell volume.Pfluegers Arch. 402:R11 (abstract)

    Google Scholar 

  18. Dunham, P.B., Benjamin, M.A. 1984. Cl-dependent cation transport in mammalian erythrocytes.Fed. Proc. 43:2476–2478

    Google Scholar 

  19. Dunham, P.B., Ellory, J.C. 1981. Passive potassium transport in low potassium sheep red cells: Dependence on cell volume and chloride.J. Physiol. (London) 318:511–530

    Google Scholar 

  20. Dunham, P.B., Logue, P.J. 1986. Potassium-chloride cotransport in resealed human red cell ghosts.Am. J. Physiol. 250:C578-C583

    Google Scholar 

  21. Dunham, P.B., Stewart, G.W., Ellory, J.C. 1980. Chloride-activated passive potassium transport in human erythrocytes.Proc. Natl. Acad. Sci. USA 77:1711–1715

    Google Scholar 

  22. Ellory, J.C., Flatman, P.W., Stewart, G.W. 1983. Inhibition of human red cell sodium and potassium transport by divalent cations.J. Physiol. (London) 340:1–17

    Google Scholar 

  23. Garay, R., Adragna, N., Canessa, M., Tosteson, D. 1981. Outward sodium and potassium cotransport in human red cells.J. Membrane Biol. 62:169–174

    Google Scholar 

  24. Geck, P., Heinz, E. 1986. The Na−K−2Cl cotransport system.J. Membrane Biol. 91:97–105

    Google Scholar 

  25. Gunn, R.B., Dalmark, M., Tosteson, D.C., Wieth, J.O. 1973. Characteristics of chloride transport in human red blood cells.J. Gen. Physiol. 61:185–206

    Google Scholar 

  26. Haas, M., Forbush, B., III 1986.3H Bumetanide binding to duck red cells. Correlation with inhibition of (Na+K+2Cl) co-transport.J. Biol. Chem. 261:8434–8441

    Google Scholar 

  27. Haas, M., McManus, T.J. 1985. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions.J. Gen. Physiol. 85:649–667

    Google Scholar 

  28. Haas, M., Schmidt, W.F., III, McManus, T.J. 1982. Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na+K+2 Cl] co-transport.J. Gen. Physiol. 80:125–147

    Google Scholar 

  29. Haas, M., Starke, L.C., McManus, T.J. 1983. Sodium modulation of catecholamine-stimulated K/K (K/Rb) exchange in duck red cells.J. Gen. Physiol. 82:10a-11a (abstract)

    Google Scholar 

  30. Kaji, D.M. 1985. Volume-activated K flux in human erythrocytes.J. Gen. Physiol. 86:40a (abstract)

    Google Scholar 

  31. Kaji, D., Amblard, J. 1986. Volume sensitive K transport in human erythrocytes.J. Gen. Physiol. 88:719–738

    Google Scholar 

  32. Kaji, D., Kahn, T. 1985. Kinetics of Cl-dependent K influx in human erythrocytes with and without external Na: Effect of NEM.Am. J. Physiol. 249:C490-C496

    Google Scholar 

  33. Lauf, P.K. 1983. Thiol-dependent passive K/Cl transport in sheep red cells: I. Dependence on chloride and external K+ [Rb+] ions.J. Membrane Biol. 73:237–246

    Google Scholar 

  34. Lauf, P.K. 1984. Thiol-dependent passive K+Cl transport in sheep red blood cells: VI. Functional heterogeneity and immunologic identity with volume-stimulated K+ (Rb+) fluxes.J. Membrane Biol. 82:167–178

    Google Scholar 

  35. Lauf, P.K. 1985. K+∶Cl transport: Sulfhydryls, divalent cations, and the mechanism of volume activation in a red cell.J. Membrane Biol. 88:1–13

    Google Scholar 

  36. Lauf, P.K., Adragna, N.C., Garay, R.P. 1984. Activation by N-ethylmaleimide of a latent K+−Cl flux in human red blood cells.Am. J. Physiol. 246:C385-C390

    Google Scholar 

  37. Lauf, P.K., Garay, R., Adragna, N.C. 1982. N-Ethylmaleimide stimulates chloride-dependent K+ but not Na+ fluxes in human red cells.J. Gen. Physiol. 80:19a (abstract)

    Google Scholar 

  38. Lauf, P.K., Perkins, C.M., Adragna, N.C. 1985. Cell volume and metabolic dependence of NEM-activated K+−Cl flux in human red blood cells.Am. J. Physiol. 249:C124-C128

    Google Scholar 

  39. Lytle, C., Haas, M., McManus, T.J. 1986. Chloride-dependent obligate cation exchange: A partial reaction of [Na−K+2Cl] co-transport.Fed Proc. 45:548 (abstract)

    Google Scholar 

  40. McManus, T.J. 1987. Na, K, 2Cl co-transport: Kinetics and mechanism.In: Physiology and Biophysics of Chloride and Cation Cotransport Across Cell Membranes. Symposium Summary.Fed. Proc. (in press)

  41. McManus, T.J., Haas, M., Starke, L.C., Lytle, C.Y. 1985. The duck red cell model of volume-sensitive chloride-dependent cation transport.Ann. N.Y. Acad. Sci. 456:183–186

    Google Scholar 

  42. Stein, W.D. 1986. Intrinsic, apparent, and effective affinities of co- and countertransport systems.Am. J. Physiol. 250:C523-C533

    Google Scholar 

  43. Wiater, L.A., Dunham, P.B. 1983. Passive transport of K+ and Na+ in human red blood cells: Sulfhydryl binding agents and furosemide.Am. J. Physiol. 245:C348-C356

    Google Scholar 

  44. Wiley, J.S., Cooper, R.A. 1974. A furosemide-sensitive co-transport of sodium plus potassium in the human red cell.J. Clin. Invest. 53:745–755

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duhm, J. Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: Modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide. J. Membrain Biol. 98, 15–32 (1987). https://doi.org/10.1007/BF01871042

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01871042

Key Words

Navigation