Skip to main content
Log in

Voltage- and time dependence of apical membrane conductance during current clamp inNecturus gallbladder epithelium

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effects of short (1 sec) and long (1 min) transepithelial current clamps on membrane voltages and resistances ofNecturus gallbladder were investigated. Transepithelial and cell membrane current-voltage relationships determined from 1-sec clamps revealed that: a) depolarization of the apical membrane voltage (V mc) results in a marked decrease in apical membrane fractional resistance (fR a), whereas hyperpolarization ofV mc results in either no change infR a or a small increase, and b) the voltage-dependent changes infR a are essentially complete within 500 msec. Exposure of the tissue to 5mm TEA+ on the mucosal side caused no significant change in baselineV mc (−69±2 mV) and yet virtually abolished the voltage dependence offR a. A possible interpretation of these results is that two types of K+ channels exist in the apical membrane, with different voltage dependencies and TEA+ sensitivities. Acidification or Ba2+ addition to the mucosal solution also reduced the voltage-dependent changes infR a. The time courses of the changes infR a and in the cable properties of the epithelium were assessed during 1-min transepithelial current clamps (±200 μA/cm2). No secondary change infR a was observed with mucosa-to-serosa currents, but a slow TEA+-sensitive decrease infR a (half-time of seconds) was evident with serosa-to-mucosa currents. Cable analysis experiments demonstrated that the initial (<500 msec) voltage-dependent decrease infR a is due to a fall in apical membrane resistance. The later decrease infR a is due to changes in both cell membrane resistances attributable to the increase in transcellular current flow resulting from a fall in paracellular conductance. The voltage dependence of the apical membrane conductance is a more significant problem in estimatingfR a than the current-induced effects on the lateral intercellular spaces. In principle, TEA+ can be used to prevent the nonlinear behavior ofR a during measurements of the voltage divider or membrane resistance ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, P.H., Hope, A.B. 1969a. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. I. Theory.Biophys. J. 9:700–728

    Google Scholar 

  • Barry, P.H., Hope, A.B. 1969b. Electroosmosis in membranes: Effects of unstirred layers and transport numbers. II. Experimental.Biophys. J. 9:729–757

    Google Scholar 

  • Bello-Reuss, E., Grady, T.P., Reuss, L. 1981. Mechanisms of the effect of cyanide on cell membrane potentials inNecturus gallbladder epithelium.J. Physiol. (London) 314:343–357

    Google Scholar 

  • Bindslev, N., Tormey, J. McD., Wright, E.M. 1974. The effects of electrical and osmotic gradients on lateral intercellular spaces and membrane conductance in a low resistance epithelium.J. Membrane Biol. 19:357–380

    Article  Google Scholar 

  • Bolivar, J.J., Cereijido, M. 1987. Voltage and Ca2+-activated K+ channel in cultured epithelial cells (MDCK).J. Membrane Biol. 97:43–51

    Google Scholar 

  • Boulpaep, E. L., Sackin, H. 1980. Electrical analysis of intraepithelial barriers.Curr. Top. Membr. Transp. 13:169–197

    Google Scholar 

  • Clausen, C., Lewis, S.A., Diamond, J.M. 1979. Impedance analysis of a tight epithelium using a distributed resistance model.Biophys. J. 26:291–318

    PubMed  Google Scholar 

  • Essig, A. 1982. Influence of cellular and paracellular conductance patterns on epithelial transport and metabolism.Biophys. J. 38:143–152

    PubMed  Google Scholar 

  • Frindt, G., Palmer, L.G. 1987. Ca-activated K channels in apical membrane of mammalian CCT, and their role in K secretion.Am. J. Physiol. 252:F458-F467

    PubMed  Google Scholar 

  • Frömter, E. 1972. The route of passive ion movement through the epithelium ofNecturus gallbladder.J. Membrane Biol. 8:259–301

    Google Scholar 

  • García-Díaz, J.F., Essig, A. 1985. Capacitative transients in voltage-clamped epithelia.Biophys. J. 48:519–523

    PubMed  Google Scholar 

  • García-Díaz, J.F., Nagel, W., Essig, A. 1983. Voltage-dependent K conductance at the apical membrane ofNecturus gallbladder.Biophys. J. 43:269–278

    PubMed  Google Scholar 

  • Gögelein, H., Driessche, W. van 1981. The effect of electrical gradients on current fluctuations and impedance recorded fromNecturus gallbladder.J. Membrane Biol. 60:199–209

    Google Scholar 

  • Guggino, S.E., Guggino, W.B., Green, N., Sacktor, B. 1987. Ca2+-activated K+ channels in cultured medullary thick ascending limb cells.Am. J. Physiol. 252:C121-C127

    PubMed  Google Scholar 

  • Gunter-Smith, P.J. 1987. Voltage-sensitive conductance in guinea-pig gallbladder epithelial cells.Fed. Proc. 46:1269

    Google Scholar 

  • Hunter, M., Lopes, A. G., Boulpaep, E., Giebisch, G. 1986. Regulation of single potassium ion channels from apical membrane of rabbit collecting tubule.Am. J. Physiol. 251:F725-F733

    Google Scholar 

  • Kottra, G., Frömter, E. 1984a. Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. I. Experimental procedures.Pfluegers Arch. 402:409–420

    Google Scholar 

  • Kottra, G., Frömter, E. 1984b. Rapid determination of intraepithelial resistance barriers by alternating current spectroscopy. II. Test of model circuits and quantification of results.Pfluegers Arch. 402:421–432

    Google Scholar 

  • Maruyama, Y., Matsunaga, H., Hoshi, T. 1986. Ca2+- and voltage activated K+ channel in apical cell membrane of gallbladder epithelium fromTriturus.Pfluegers Arch. 406:563–567

    Google Scholar 

  • Os, C.H., van, Slegers, J.F.G. 1975. The electrical potential profile of gallbladder epithelium.J. Membrane Biol. 24:341–363

    Google Scholar 

  • Petersen, K.-U., Reuss, L. 1985. Electrophysiological effects of propionate and bicarbonate on gallbladder epithelium.Am. J. Physiol. 248:C58-C69

    PubMed  Google Scholar 

  • Reuss, L. 1979. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder: III. Ionic permeability of the basolateral cell membrane.J. Membrane Biol. 47:239–259

    Article  Google Scholar 

  • Reuss, L., Constantin, J.L., Bazile, J.E. 1987. Diphenylamine-2-carboxylate blocks Cl/HCO 3 exchange inNecturus gallbladder epithelium.Am. J. Physiol. 253:C79-C89

    PubMed  Google Scholar 

  • Reuss, L., Finn, A.L. 1975a. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. I. Circuit analysis and steady-state effects of mucosal solution ionic substitutions.J. Membrane Biol. 25:115–139

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975b. Electrical properties of the cellular transepithelial pathway inNecturus gallbladder. II. Ionic permeability of the apical cell membrane.J. Membrane Biol. 25:141–161

    Google Scholar 

  • Reuss, L., Finn, A.L. 1977. Mechanisms of voltage transients during current clamp inNecturus gallbladder.J. Membrane Biol. 37:299–319

    Google Scholar 

  • Reuss, L., Weinman, S.A. 1979. Intracellular ionic activities and transmembrane electrochemical potential differences in gallbladder epithelium.J. Membrane Biol. 49:345–362

    Article  Google Scholar 

  • Segal, Y. Reuss, L. 1987. Single channels in the apical membrane ofNecturus gallbladder.Physiologist 30:157

    Google Scholar 

  • Stoddard, J.S., Reuss, L. 1985. Effect of mucosal CO2/HCO3 on intracellular pH inNecturus gallbladder epithelium.J. Gen. Physiol. 86:42a

    Google Scholar 

  • Stoddard, J.S., Reuss, L. 1988. Dependence of cell membrane conductances on bathing solution HCO 3 /CO2 inNecturus gallbladder.J. Membrane Biol. (in press)

  • Suzuki, K., Kottra, G., Kampmann, L., Frömter, E. 1982. Square wave pulse analysis of cellular and paracellular conductance pathways inNecturus gallbladder epithelium.Pfluegers Arch. 394:302–312

    Google Scholar 

  • Weinman, S.A., Reuss, L. 1984. Na+−H+ exchange and Na+ entry across the apical membrane ofNecturus gallbladder.J. Gen. Physiol. 83:57–74

    PubMed  Google Scholar 

  • Wedner, H.J., Diamond, J.M. 1969. Contributions of unstirredlayer effects to apparent electrokinetic phenomena in the gall bladder.J. Membrane Biol. 1:92–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoddard, J.S., Reuss, L. Voltage- and time dependence of apical membrane conductance during current clamp inNecturus gallbladder epithelium. J. Membrain Biol. 103, 191–204 (1988). https://doi.org/10.1007/BF01870949

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870949

Key Words

Navigation