Skip to main content
Log in

Calcium efflux and intracellular exchangeable calcium in mammalian nonmyelinated nerve fibers

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Calcium efflux was measured in desheathed rabbit vagus nerves loaded with45Ca2+. The effects of extracellular calcium, sodium, phosphate, potassium and lanthanum ions on the calcium efflux were investigated and the distribution of intracellular calcium determined by kinetic analysis of45Ca2+ efflux profiles. The45Ca2+ desaturation curve can be adequately described by three exponential terms. The rate constant of the first component (0.2 min−1) corresponds to an efflux from an extracellular compartment. The two slow components had rate constants of 0.03 and 0.08 min−1 and represent the efflux from two intracellular pools. The amounts of exchangeable calcium in these two pools, after a loading period of 150 min, were 0.170 and 0.102 mmol/kg wet weight, respectively. The total calcium efflux in physiological conditions amounted to about 24 fmol cm−2 sec−1. The magnitude of the two intracellular compartments as well as the total calcium efflux were markedly affected by extracellular phosphate, sodium and lanthanum, whereas the corresponding rate constants remained almost unchanged. Phosphate reversed the effect of sodium withdrawal on the calcium efflux: in the absence of phosphate, sodium withdrawal increased the calcium efflux to 224%, but in the presence of phosphate, sodium withdrawal decreased calcium efflux to 44%. Phosphate also affected the increase in calcium efflux produced by inhibitors of mitochondrial calcium uptake, suggesting that two different mitochondrial pools contribute to the control and regulation of intracellular calcium and of the transmembrane calcium transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affolter, H., Carafoli, E. 1980. The Ca2+−Na+ antiporter of heart mitochondria operates electroneutrally.Biochem. Biophys. Res. Commun. 95:193–196

    PubMed  Google Scholar 

  • Anner, B., Ferrero, J., Jirounek, P., Jones, G.J., Salamin, A., Straub, R.W. 1976. Sodium-dependent influx of orthophosphate in mammalian non-myelinated nerve.J. Physiol. (London) 260:667–686

    Google Scholar 

  • Baker, P.F., Schlaepfer, W. 1975. Calcium uptake by axoplasm extruded from giant axons ofLoligo.J. Physiol. (London) 249:37P-38P

    Google Scholar 

  • Baker, P.F., Schlaepfer, W.W. 1978. Uptake and binding of calcium by axoplasm isolated from giant axons ofLoligo andMyxicola.J. Physiol. (London) 276:103–125

    Google Scholar 

  • Barritt, G.J. 1981. Evidence for two compartments of exchangeable calcium in isolated rat liver mitochondria obtained using a45Ca exchange technique in the presence of magnesium, phosphate, and ATP at 37°C.J. Membrane Biol. 62:53–63

    Google Scholar 

  • Barritt, G.J., Lamont, S.V. 1982. Kinetic properties of exchangeable calcium in guinea-pig heart mitochondria measured at low concentrations of free calcium and in the presence of Mg2+, ATP4-, and inorganic phosphate.Cell Calcium 3:215–225

    PubMed  Google Scholar 

  • Blaustein, M.P. 1977. Effects of internal and external cations and of ATP on sodium-calcium and calcium-calcium exchange in squid axons.Biophys. J. 20:79–111

    PubMed  Google Scholar 

  • Blaustein, M.P., Ratzlaff, R.W., Kendrick, N.C., Schweitzer, E.S. 1978b. Calcium buffering in presynaptic nerve terminals. I. Evidence for involvement of a nonmitochondrial ATP-dependent sequestration mechanism.J. Gen. Physiol. 72:15–41

    PubMed  Google Scholar 

  • Blaustein, M.P., Ratzlaff, R.W., Schweitzer, E.S. 1978a. Calcium buffering in presynaptic nerve terminals. II. Kinetic properties of the nonmitochondrial Ca sequestration mechanism.J. Gen. Physiol. 72:43–66

    PubMed  Google Scholar 

  • Blaustein, M.P., Ratzlaff, R.W., Schweitzer, E.S. 1980. Control of intracellular calcium in presynaptic nerve terminals.Fed. Proc. 39:2790–2795

    PubMed  Google Scholar 

  • Borle, A.B. 1972. Kinetic analysis of calcium movements in cell culture. V. Intracellular calcium distribution in kidney cells.J. Membrane Biol. 10:45–66

    Google Scholar 

  • Brinley, F.J., Jr., Tiffert, T., Scarpa, A. 1978. Mitochondria and other calcium buffers of squid axon studiedin situ.J. Gen. Physiol. 72:101–127

    PubMed  Google Scholar 

  • Brinley, F.J., Jr., Tiffert, T., Scarpa, A., Mullins, L.J. 1977. Intracellular calcium buffering capacity in isolated squid axons.J. Gen. Physiol. 70:355–384

    PubMed  Google Scholar 

  • Carafoli, E., Crompton, M. 1978. The regulation of intracellular calcium.In: Current Topics in Membranes and Transport. F. Bronner and A. Kleinzeller, editors. pp. 151–199. Academic, New York/San Francisco/London

    Google Scholar 

  • Crompton, M., Capano, M., Carafoli, E. 1976. The sodium-induced efflux of calcium from heart mitochondria.Eur. J. Biochem. 69:453–462

    Google Scholar 

  • DiPolo, R., Requena, J., Brinley, F.J., Jr., Mullins, L.J., Scarpa, A., Tiffert, T. 1976. Ionized calcium concentrations in squid axons.J. Gen. Physiol. 67:433–467

    PubMed  Google Scholar 

  • Fiskum, G., Lehninger, A.L. 1982. Mitochondrial regulation of intracellular calcium.In: Calcium and Cell Function, C. Wy, editor. Vol. 2, pp. 39–80. Academic, New York

    Google Scholar 

  • Jirounek, P., Jones, G.J., Pralong, W.F., Straub, R.W. 1983. Continuous measurement of Ca movements in mammalian nerve fibers using45Ca.J. Physiol. (London) 334:117P-118P

    Google Scholar 

  • Jirounek, P., Nouspikel, T., Pralong, W., Vitus, J., Straub, R.W. 1984a. Effects of phosphate and sodium on calcium influx in mammalian non-myelinated nerve fibers.Experientia 40:647

    Google Scholar 

  • Jirounek, P., Pralong, W.F., Vitus, J., Straub, R.W. 1986. Continuous measurement of calcium influx in mammalian nonmyelinated nerve fibers: Effects of Nao, Cao, and electrical activity.J. Membrane Biol. 91:157–164

    Google Scholar 

  • Jirounek, P., Rouiller, M., Jones, G.J., Straub, R.W. 1982. Effects of calcium and lanthanum on phosphate efflux from nonmyelinated nerve fibers.J. Membrane Biol. 65:125–130

    Google Scholar 

  • Jirounek, P., Vitus, J., Jones, G.J., Pralong, W.F., Straub, R.W. 1984b. Involvement of intracellular calcium in the phosphate efflux from mammalian nonmyelinated nerve fibers.J. Membrane Biol. 79:87–95

    Google Scholar 

  • McGraw, C.F., Somylo, A.V., Blaustein, M.P. 1980. Probing for calcium at presynaptic nerve terminals.Fed. Proc. 39:2796–2801

    PubMed  Google Scholar 

  • Marquardt, D.W. 1963. An algorithm for least-squares estimation of nonlinear parameters.J. Soc. Ind. Appl. Math. 11:431–441

    Google Scholar 

  • Martonosi, A., Feretos, R. 1964. Sarcoplasmic reticulum. I. The uptake of Ca++ by sarcoplasmic reticulum fragments.J. Biol. Chem. 239:648–658

    PubMed  Google Scholar 

  • Nicholls, D., Akerman, K. 1982. Mitochondrial calcium transport.Biochim. Biophys. Acta 683:57–88

    PubMed  Google Scholar 

  • Ponce-Hornos, J.E., Langer, G.A. 1982. Effects of inorganic phosphate on ion exchange, energy state, and contraction in mammalian heart.Am. J. Physiol. 242:H79-H88

    PubMed  Google Scholar 

  • Ponce-Hornos, J.E., Langer, G.A., Nudd, L.M. 1982. Inorganic phosphate: Its effects on Ca exchange and compartmentalization in cultured heart cells.J. Mol. Cell. Cardiol. 14:41–51

    PubMed  Google Scholar 

  • Pralong, W.F., Jirounek, P., Straub, R.W. 1985. Changes in free calcium in mammalian nonmyelinated nerve fibers followed by quin-2.Experientia 41:833

    Google Scholar 

  • Pralong, W.F., Straub, R.W. 1985. Increase in free Ca in rabbit nerve axons during electrical activity measured by quin 2.J. Physiol. (London) 371:266P

    Google Scholar 

  • Rasgado-Flores, H., Blaustein, M.P. 1987. ATP-dependent regulation of cytoplasmic free calcium in nerve terminals.Am. J. Physiol. 252:C588-C594

    PubMed  Google Scholar 

  • Requena, J., DiPolo, R., Brinley, F.J., Jr., Mullins, L.J. 1977. The control of ionized calcium in squid axons.J. Gen. Physiol. 70:329–353

    PubMed  Google Scholar 

  • Ritchie, J.M., Straub, R.W. 1979. Phosphate efflux and oxygen consumption in small non-myelinated nerve fibres at rest and during activity.J. Physiol. (London) 287:315–327

    Google Scholar 

  • Stout, M.A., Diecke, F.P.J. 1981. Effect of K ions on45Ca fluxes in myelinated nerve.Arch. Int. Pharmacodyn. Ther. 252:17–28

    PubMed  Google Scholar 

  • Straub, R.W., Ferrero, J., Jirounek, P., Rouiller, M., Salamin, A. 1977. Sodium-dependent transport of orthophosphate in nerve fibres.In: Phosphate Metabolism. S.G. Massry and E. Ritz, editors. pp. 333–334. Plenum, New York

    Google Scholar 

  • Studer, R.K., Borle, A.B. 1980. The effects of hydrogen ions on the kinetics of calcium transport by rat kidney mitochondria.Arch. Biochem. Biophys. 203:707–718

    PubMed  Google Scholar 

  • Tscharner, P. 1982. Décomposition d'exponentielles. Application à la résonance magnétique nucléaire. Travail de diplôme. Faculté des Sciences, Université de Genève

Download references

Author information

Authors and Affiliations

Authors

Additional information

Deceased 18 April 1988

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jirounek, P., Vitus, J., Pralong, W.F. et al. Calcium efflux and intracellular exchangeable calcium in mammalian nonmyelinated nerve fibers. J. Membrain Biol. 103, 121–134 (1988). https://doi.org/10.1007/BF01870943

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870943

Key Words

Navigation