Skip to main content
Log in

Interactions of bacteriorhodopsin-containing membrane systems with polyelectrolytes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The interaction of purple membranes and bacteriorhodopsin-containing phospholipid vesicles with diethyl aminoethyl (DEAE)-dextran and dextran sulfate was investigated. Between pH 1 and pH 7, DEAE-dextran at low concentrations caused aggregation in both membrane systems; at higher concentrations these aggregates disappeared again, probably due to a reversal of net membrane charge. Dextran sulfate did not aggregate the membrane systems at any concentration tested; it rather prevented the aggregation normally occurring at low pH. The effects of the polyelectrolytes on the pH-dependent formation of the 605-nm chromophore were studied in both membrane systems. In purple membrane, DEAE-dextran and dextran sulfate caused shifts in the pH-curves corresponding to changes in local surface potential of +90 mV and −10 mV, respectively. Qualitatively comparable, although smaller changes were observed in bR-containing vesicles. We propose that in vesicular preparations the effect of charged polymers on the potential profile may be limited to the external membrane surface; in that case, our results are consistent with a location of the chromophore close to the cytoplasmic surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bensadoun, A., Weinstein, D. 1976. Assay of proteins in the presence of interfering materials.Anal. Biochem. 70:241

    Google Scholar 

  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal. Biochem. 72:248

    Google Scholar 

  3. Davies, J.T., Rideal, E.K. 1961. Interfacial Phenomena, Chapters II and III. Academic Press, New York/London

    Google Scholar 

  4. Edgerton, M.E., Moore, T.A., Greenwood, C. 1978. Salt reversal of the acid-induced changes in purple membrane fromHalobacterium halobium.FEBS Lett. 95:35

    Google Scholar 

  5. Eisenbach, M., Bakker, E.P., Korenstein, R., Caplan, S.R. 1976. Bacteriorhodopsin: Biphasic kinetics of phototransients and of light-induced proton transfer by sub-bacterialHalobacterium halobium particles and by reconstituted liposomes.FEBS Lett. 71:228

    Google Scholar 

  6. Fischer, U., Oesterhelt, D. 1979. Chromophore equilibria in bacteriorhodopsin.Biophys. J. 28:211

    Google Scholar 

  7. Gerber, G.E., Gray, G.P., Wildenauer, D., Khorana, H.G. 1977. Orientation of bacteriorhodopsin inHalobacterium halobium as studied by selective proteolysis.Proc. Nat. Acad. Sci. USA 74:5426

    Google Scholar 

  8. Happe, M., Teather, R.M., Overath, P., Knöbling, A., Oesterhelt, D. 1977. Direction of proton translocation in proteoliposomes formed from purple membrane and acidic lipids depends on the pH during reconstitution.Biochim. Biophys. Acta 465:415

    Google Scholar 

  9. Hellingwerf, K.J. 1979. Structural and Functional Studies on Lipid Vesicles Containing Bacteriorhodopsin. Ph.D. Thesis, University of Amsterdam, The Netherlands

    Google Scholar 

  10. Heyn, M.P., Bauer, P.J., Dencher, N.A., 1975. A natural CD label to probe the structure of the purple membrane fromHalobacterium halobium by means of exciton coupling effects.Biochem. Biophys. Res. Commun. 67:897

    Google Scholar 

  11. Kasahara, M. 1977. A permeability change in Ehrlich ascites tumor cells caused by dextran sulfate and its repair by ascites fluid or Ca2+ ions.Arch. Biochem. Biophys. 184:400

    Google Scholar 

  12. Kates, M., Kushwaha, S.C. 1978. Biochemistry of the lipids of extremely halophilic bacteria.In: Energetics and Structure of Halophilic Microorganisms. S.R. Caplan and M. Ginzburg, editors. Vol. 1, pp. 461–479. Elsevier/North Holland, Amsterdam-New York

    Google Scholar 

  13. Khorana, H.G., Gerber, G.E., Herlihy, W.C., Gray, C.P., Anderegg, R.J., Nihei, K., Biemann, K. 1979. Amino acid sequence of bacteriorhodopsin.Proc. Natl. Acad. Sci. USA 76:5046

    Google Scholar 

  14. McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces.In: Current Topics in Membrane Transport, F. Bronner, and A. Kleinzeller, editors. Volume 9, pp. 71–144. Academic Press, New York

    Google Scholar 

  15. Moore, T.A., Edgerton, M.E., Part, G., Greenwood, C., Perham, R. 1978. Studies of an acid-induced species of purple membrane formHalobacterium halobium.Biochem. J. 171:469

    Google Scholar 

  16. Mowery, P.C., Lozier, R.H., Quae Chae, Y.-W.T., Taylor, M., Stoeckenius, W. 1979. Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin.Biochemistry 18:4100

    Google Scholar 

  17. Muccio, D.D., Cassim, J.Y. 1979. Interpretations of the effects of pH on the spectra of purple membrane.J. Mol. Biol. 135:595

    Google Scholar 

  18. Muller, R.U., Finkelstein, A. 1972. The effect of surface charge on the voltage-dependent conductance induced in thin lipid membranes by monazomycin.J. Gen. Physiol. 60:285

    Google Scholar 

  19. Oesterhelt, D., Hess, B. 1973. Reversible photolysis of the purple complex in the purple membrane ofHalobacterium halobium.Eur. J. Biochem. 37:316

    Google Scholar 

  20. Oesterhelt, D., Stoeckenius, W. 1971. Rhodopsin-like protein from the purple membrane ofHalobacterium halobium.Nature New Biol. 233:149

    Google Scholar 

  21. Oesterhelt, D., Stoeckenius, W. 1973. Functions of a new photoreceptor membrane.Proc. Natl. Acad. Sci. USA 70:2853

    Google Scholar 

  22. Oesterhelt, D., Stoeckenius, W. 1974. Isolation of the cell membrane ofHalobacterium halobium and its fractionation into red and purple membrane.Meth. Enzymol. 31A:667

    Google Scholar 

  23. Ovchinnikov, Yu.A., Abdulaev, N.G., Feigina, M.Y., Kiseley, A.V., Lobanov, N.A. 1977. Recent findings in the structurefunctional characteristics of bacteriorhodopsin.FEBS Lett. 84:1.

    Google Scholar 

  24. Pharmacia. 1977. Dextran fractions, dextran sulphate, DEAE dextran: Defined polymers for biological research. Literature Service, Pharmacia Fine Chemicals AB

  25. Racker, E. 1973. A new procedure for the reconstitution of biologically active phospholipid vesicles.Biochem. Biophys. Res. Commun. 55:224

    Google Scholar 

  26. Rehorek, M., Heyn, M.P., 1979. Binding ofall-trans-retinal to the purple membrane. Evidence for cooperativity and determination of the extinction coefficient.Biochemistry 18:4977

    Google Scholar 

  27. Stoeckenius, W., Lozier, R.H., Bogomolni, R.A. 1979. Bacteriorhodopsin and the purple membrane of halobacteria.Biochim. Biophys. Acta 505:215

    Google Scholar 

  28. Walker, J.E., Carne, A.F., Schmidt, H.W. 1979. The topography of the purple membrane.Nature 278:653

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker-Grunwald, T., Hess, B. Interactions of bacteriorhodopsin-containing membrane systems with polyelectrolytes. J. Membrain Biol. 60, 45–49 (1981). https://doi.org/10.1007/BF01870831

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870831

Keywords

Navigation