Skip to main content
Log in

Kinetic mechanism of Na+, K+, Cl-cotransport as studied by Rb+ influx into HeLa cells: Effects of extracellular monovalent ions

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Ouabain-insensitive, furosemide-sensitive Rb+ influx (J Rb) into HeLa cells was examined as functions of the extracellular Rb+, Na+ and Cl concentrations. Rate equations and kinetic parameters, including the apparent maximumJ Rb, the apparent values ofK m for the three ions and the apparentK i for K+, were derived. Results suggested that one unit molecule of this transport system has one Na+, one K+ and two Cl sites with different affinities, one of the Cl sites related with binding of Na+, and the other with binding of K+(Rb+). A 1∶1 stoichiometry was demonstrated between ouabain-insensitive, furosemidesensitive influxes of22Na+ and Rb+, and a 1∶2 stoichiometry between those of Rb+ and36Cl. The influx of either one of these ions was inhibited in the absence of any one of the other two ions. Monovalent anions such as nitrate, acetate, thiocyanate and lactate as substitutes for Cl inhibited ouabain-insensitive Rb+ influx, whereas sulfamate and probably also gluconate did not inhibitJ Rb. From the present results, a general model and a specialized cotransport model were proposed: 1) In HeLa cells, one Na+ and one Cl bind concurrently to their sites and then one K+ (Rb+) and another Cl bind concurrently. 2) After completion of ion bindings Na+, K+(Rb) and Cl in a ratio of 1∶1∶2 show synchronous transmembrane movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiton, J.F., Brown, C.D.A., Ogden, P., Simmons, N.L. 1982. K+ transport in “tight” epithelial monolayers of MDCK cells.J. Membrane Biol. 65:99–109

    Google Scholar 

  • Aiton, J.F., Chipperfield, A.R., Lamb, J.F., Ogden, P., Simmons, N.L. 1981. Occurrence of passive furosemide-sensitive transmembrane potassium transport in cultured cells.Biochim. Biophys. Acta 646:389–398

    Google Scholar 

  • Aiton, J.F., Simmons, N.L. 1983. Effect of ouabain upon diuretic-sensitive K+ transport in cultured cells. Evidence for separate modes of operation of the transport.Biochim. Biophys. Acta 734:279–289

    PubMed  Google Scholar 

  • Atlan, H., Snyder, D., Panet, R. 1984. Ouabain-resistant Na+, K+ transport system in mouse NIH 3T3 cells.J. Membrane Biol. 81:181–188

    Google Scholar 

  • Aull, F. 1981. Potassium chloride cotransport in steady-state ascites tumor cells. Does bumetanide inhibit?Biochim. Biophys. Acta 643:339–345

    PubMed  Google Scholar 

  • Benjamin, M.A., Dunham, P.B. 1983. Asymmetry of Na/K cotransport in human erythrocytes.J. Gen. Physiol. 82:27a-28a

    Google Scholar 

  • Brand, S.C., Whittam, R. 1984. The effect of furosemide on sodium movements in human red blood cells.J. Physiol. (London) 348:301–306

    Google Scholar 

  • Brand, S.C., Whittam, R., F.R.S. 1985. The change from symmetry to asymmetry of a sodium transport system in red cell membranes.Proc. R. Soc. London B 223:449–457

    Google Scholar 

  • Brazy, P.C., Gunn, R.B. 1976. Furosemide inhibition of chloride transport in human red blood cells.J. Gen. Physiol. 68:583–599

    Article  PubMed  Google Scholar 

  • Brown, C.D.A., Murer, H. 1985. Characterization of a Na∶K∶2Cl cotransport system in the apical membrane of a renal epithelial cell line (LLC-PK).J. Membrane Biol. 87:131–139

    Google Scholar 

  • Brugnara, C., Canessa, M., Cusi, D., Tosteson, D.C. 1983. Furosemide-sensitive Na and K fluxes in human red cells. Uncoupled K efflux, K-K exchange, and variable stoichiometry.J. Gen. Physiol. 82:28a

    Google Scholar 

  • Cha, S. 1968. A simple method for derivation of rate equations for enzyme-catalyzed reactions under the rapid equilibrium assumption or combined assumptions of equilibrium and steady state.J. Biol. Chem. 243:820–825

    PubMed  Google Scholar 

  • Chipperfield, A.R. 1980. An effect of chloride on (Na+K) cotransport in human red blood cells.Nature (London) 286:281–282

    Google Scholar 

  • Chipperfield, A.R. 1981. Chloride dependence of frusemide- and phloretin-sensitive passive sodium and potassium fluxes in human red cells.J. Physiol. (London) 312:435–444

    Google Scholar 

  • Chipperfield, A.R. 1984. Passive K influx into human red cells: Ion substitution experiments.J. Physiol. (London) 353:133

    Google Scholar 

  • Duhm, J., Becker, B.F. 1979. Studies on lithium transport across the red cell membrane. V. On the nature of the Na+-dependent Li+ countertransport system of mammalian erythrocytes.J. Membrane Biol. 51:263–286

    Google Scholar 

  • Duhm, J., Göbel, B.O. 1984a. Role of the furosemide-sensitive Na+/K+ transport system in determining the steady-state Na+ and K+ content and volume of human erythrocytesin vitro andin vivo.J. Membrane Biol. 77:243–254

    Google Scholar 

  • Duhm, J., Göbel, B.O. 1984b. Na+-K+ transport and volume of rat erythrocytes under dietary K+ deficiency.Am. J. Physiol. 246:C20-C29

    Google Scholar 

  • Dunham, P.B., Stewart, G.W., Ellory, J.C. 1980. Chloride-activated passive potassium transport in human erythrocytes.Proc. Natl. Acad. Sci. USA 77:1711–1715

    PubMed  Google Scholar 

  • Forbush, B., III, Palfrey, H.C. 1983.3H]bumetanide binding to membranes isolated from dog kidney outer medulla. Relationship to the Na, K, Cl co-transport system.J. Biol. Chem. 258:11787–11792

    PubMed  Google Scholar 

  • Frizzell, R.A., Field, M., Schultz, S.G. 1979. Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236:F1-F8

    Google Scholar 

  • Garay, R., Adragna, N., Canessa, M., Tosteson, D. 1981. Outward sodium and potassium cotransport in human red cells.J. Membrane Biol. 62:169–174

    Google Scholar 

  • Gargus, J.J., Slayman, C.W. 1980. Mechanism and role of furosemide-sensitive K+ transport in L cells: A genetic approach.J. Membrane Biol. 52:245–256

    Google Scholar 

  • Geck, P., Pietrzyk, C., Burckhardt, B.C., Pfeiffer, B., Heinz, E. 1980. Electrically silent cotransport of Na+, K+ and Cl in Ehrlich cells.Biochim. Biophys. Acta 600:432–447

    PubMed  Google Scholar 

  • Haas, M., McManus, T.J. 1982. Bumetanide inhibition of (Na+K+2Cl) co-transport and K/Rb exchange at a chloride site in duck red cells: Modulation by external cations.Biophys. J. 37:214a

    Google Scholar 

  • Haas, M., McManus, T.J. 1983. Bumetanide inhibits (Na+K+2Cl) co-transport at a chloride site.Am. J. Physiol. 245:C235-C240

    Google Scholar 

  • Haas, M., McManus, T.J. 1985. Effect of norepinephrine on swelling-induced potassium transport in duck red cells. Evidence against a volume-regulatory decrease under physiological conditions.J. Gen. Physiol. 85:649–667

    Google Scholar 

  • Hall, A.C., Ellory, J.C. 1985. Measurement and stoichiometry of bumetanide-sensitive (2Na∶ 1K ∶ 3Cl) cotransport in ferret red cells.J. Membrane Biol. 85:205–213

    Google Scholar 

  • Hoffmann, E.K., Sjøholm, C., Simonsen, L.O. 1983. Na+, Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).J. Membrane Biol. 76:269–280

    Article  Google Scholar 

  • Ifshin, M.S., Johnson, K.E., Eaton, D.C. 1983. Acid pH and weak acids induce Na−Cl cotransport in the rabbit urinary bladder.J. Membrane Biol. 76:151–164

    Google Scholar 

  • Ikehara, T., Yamaguchi, H., Hosokawa, K., Sakai, T., Miyamoto, H. 1984a. Rb+ influx in response to changes in energy generation: Effect of the regulation of the ATP content of HeLa cells.J. Cell. Physiol. 119:273–282

    PubMed  Google Scholar 

  • Ikehara, T., Yamaguchi, H., Sakai, T., Miyamoto, H. 1984b. Kinetic parameters and mechanism of active cation transport in HeLa cells as studied by Rb+ influx.Biochim. Biophys. Acta 775:297–307

    Google Scholar 

  • Jayme, D.W., Slayman, C.W., Adelberg, E.A. 1984. Furosemide-sensitive potassium efflux in cultured mouse fibroblasts.J. Cell. Physiol. 120:41–48

    PubMed  Google Scholar 

  • Johnson, E.A., Kootsey, J.M. 1985. A minimum mechanism for Na+−Ca++ exchange: Net and unidirectional Ca++ fluxes as functions of ion composition and membrane potential.J. Membrane Biol. 86:167–187

    Google Scholar 

  • Koenig, B., Ricapito, S., Kinne, R. 1983. Chloride transport in the thick ascending limb of Henle's loop: Potassium dependence and stoichiometry of the NaCl cotransport system in plasma membrane vesicles.Pfluegers Arch. 399:173–179

    Google Scholar 

  • Lamb, J.F., MacKinnon, M.G.A. 1971. Effect of ouabain and metabolic inhibitors on the Na and K movements and nucleotide contents of L cells.J. Physiol. (London) 213:665–682

    Google Scholar 

  • Lauf, P.K. 1984. Thiol-dependent passive K/Cl transport in sheep red cells: IV. Furosemide inhibition as a function of external Rb+, Na+, and Cl.J. Membrane Biol. 77:57–62

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  • Lubowitz, H., Whittam, R. 1969. Ion movements in human red cells independent of the sodium pump.J. Physiol. (London) 202:111–131

    Google Scholar 

  • McRoberts, J.A., Erlinger, S., Rindler, M.J., Saier, M.H., Jr. 1982. Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. Evidence for the cotransport of Na+, K+, and Cl.J. Biol. Chem. 257:2260–2266

    PubMed  Google Scholar 

  • Miyamoto, H., Rasmussen, L., Zeuthen, E. 1976. Recording of clonal growth of mammalian cells through many generations.In: Methods in Cell Biology. D.M. Prescott, editor. Vol. 13. pp. 15–27. Academic, New York

    Google Scholar 

  • Miyamoto, H., Sakai, T., Ikehara, T., Kaniike, K. 1978. Effect of Rb+ substituted for K+ on HeLa cells: Cellular content and membrane transport of monovalent cations, and cell growth.Cell Struct. Funct. 3:313–324

    Google Scholar 

  • Musch, M.W., Orellana, S.A., Kimberg, L.S., Field, M., Halm, D.R., Krasny, E.J., Jr., Frizzell, R.A. 1982. Na+−K+−Cl cotransport in the intestine of a marine teleost.Nature (London) 300:351–353

    Article  Google Scholar 

  • Owen, N.E. 1984. Regulation of Na/K/Cl cotransport in vascular smooth muscle cells.Biochem. Biophys. Res. Commun. 125:500–508

    Article  PubMed  Google Scholar 

  • Rindler, M.J., McRoberts, J.A., Saier, M.H., Jr. 1982. (Na+, K+)-cotransport in the Madin-Darby canine kidney cell line. Kinetic characterization of the interaction between Na+ and K+.J. Biol. Chem. 257:2254–2259

    PubMed  Google Scholar 

  • Russell, J.M. 1979. Chloride and sodium influx: A coupled uptake mechanism in the squid giant axon.J. Gen. Physiol. 73:801–818

    Article  PubMed  Google Scholar 

  • Russell, J.M. 1983. Cation-coupled chloride influx in squid axon. Role of potassium and stoichiometry of the transport process.J. Gen. Physiol. 81:909–925

    Article  PubMed  Google Scholar 

  • Sanders, D., Hansen, U.-P., Gradmann, D., Slayman, C.L. 1984. Generalized kinetic analysis of ion-driven cotransport systems: A unified interpretation of selective ionic effects on Michaelis parameters.J. Membrane Biol. 77:123–152

    Google Scholar 

  • Schmidt, W.F., III, McManus, T.J. 1977. Quabain-insensitive salt and water movements in duck red cells. III. The role of chloride in the volume response.J. Gen. Physiol. 70:99–121

    PubMed  Google Scholar 

  • Tivey, D.R., Simmons, N.L., Aiton, J.F. 1985. Role of passive potassium fluxes in cell volume regulation in cultured HeLa cells.J. Membrane Biol. 87:93–105

    Article  Google Scholar 

  • Tupper, J.T. 1975. Cation flux in the Ehrlich ascites tumor cell. Evidence for Na+-for-Na+ and K+-for-K+ exchange diffusion.Biochim. Biophys. Acta. 394:586–596

    PubMed  Google Scholar 

  • Wiater, L.A., Dunham, P.B. 1983. Passive transport of K+ and Na+ in human red blood cells: Sulfhydryl binding agents and furosemide.Am. J. Physiol. 245:C348-C356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, H., Ikehara, T., Yamaguchi, H. et al. Kinetic mechanism of Na+, K+, Cl-cotransport as studied by Rb+ influx into HeLa cells: Effects of extracellular monovalent ions. J. Membrain Biol. 92, 135–150 (1986). https://doi.org/10.1007/BF01870703

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870703

Key Word

Navigation