Skip to main content
Log in

Sulfhydryl reagents affect Na+ uptake into toad bladder membrane vesicles

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effect of sulfhydryl reagents on the Na+ permeability mechanisms of toad urinary bladder vesicles was examined. The reagents 5,5′-dithiobis (2-nitrobenzoic acid) (DTNB), iodosobenzoate, and ethylenimine were able to decrease amiloride-inhibited sodium uptake into vesicles when used at low concentrations. When used at higher concentrations these reagents were able to induce large increases in vesicle Na+ permeability that were not sensitive to amiloride. The reagentp-chloro-mercuribenzene sulfonate was able to induce such leaks even at low concentrations. The reagent N-ethylmaleimide was incapable of substantially affecting vesicle Na+ transport in any way. All of the effects observed could be reversed by removing the reagents from the solution surrounding the vesicles. Our results help explain the varied actions of sulfhydryl reagents on intact epithelial tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benos, D.J., Mandel, L.J., Simon, S.A. 1980. Effects of chemical group specific reagents on sodium entry and the amiloride binding site in frog skin: Evidence for separate sites.J. Membrane Biol. 56:149–158

    Google Scholar 

  • Brown, K.M., Dennis, J.E. 1972. Derivative-free analogues of the Levenberg-Marquardt and Gauss algorithms for nonlinear least squares approximation.Numer. Math. 18:289–297

    Article  Google Scholar 

  • Dick, H.J., Lindemann, B. 1975. Saturation of Na-current into frog skin epithelium abolished by PCMB.Pflueger's Arch. 355:R72

    Google Scholar 

  • Ellman, G.L. 1959. Tissue sulfhydryl groups.Arch. Biochem. Biophys. 82:70–77

    PubMed  Google Scholar 

  • Ferreira, K.T.G. 1970. The effect of Cu2+ on isolated frog skin.Biochim. Biophys. Acta 203:555–567

    PubMed  Google Scholar 

  • Fleisher, L.N., Yorio, T., Bentley, P.J. 1975. Effect of cadmium on epithelial membranes.Toxicol. Appl. Pharmacol. 33:384–387

    PubMed  Google Scholar 

  • Frenkel, A., Ekblad, E.B.M., Edelman, I.S. 1975. Effects of sulfhydryl reagents on basal and vasopressin-stimulated Na+ transport in the toad bladder.In: Biomembranes. H. Eisenberg, E. Katchalski-Katzir, and L.A. Manson, editors. Vol. 7, pp. 61–80. Plenum, New York

    Google Scholar 

  • Godin, D.V., Schrier, S.L. 1972. Modification of the erythrocyte membrane by sulfhydryl group reagents.J. Membrane Biol. 7:285–312

    Google Scholar 

  • Harms, V., Fanestil, D.D. 1977. Functions of apical membrane of toad urinary bladder: Effects of membrane impermeant reagents.Am. J. Physiol. 233:F607-F614

    PubMed  Google Scholar 

  • Hillyard, S.D., Gonick, H.C. 1976. Effects of Cd++ on shortcircuit current across epithelial membranes. I. Interactions with Ca++ and vasopressin on frog skin.J. Membrane Biol. 26:109–119

    Google Scholar 

  • Janatova, J., Fuller, J.K., Hunter, M.J. 1968. The heterogeneity of bovine albumin with respect to sulfhydryl and dimer content.J. Biol. Chem. 243(13):3612–3622

    PubMed  Google Scholar 

  • Knauf, P.A., Rothstein, A. 1971. Chemical modification of membranes: I. Effects of sulfhydryl and amino reactive reagents on anion and cation permeability of the human red blood cell.J. Gen. Physiol. 58:190–210

    PubMed  Google Scholar 

  • LaBelle, E.F., Valentine, M.E. 1980. Inhibition by amiloride of22Na+ transport into toad bladder microsomes.Biochim. Biophys. Acta 601:195–205

    PubMed  Google Scholar 

  • Li, J.H., Sousa, R.C. de 1977. Effects of Ag+ on frog skin: Interactions with oxytocin, amiloride and ouabain.Experientia 33(4):433–436

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  • Means, G., Feeney, R.E. 1971. Chemical Modification of Proteins. p. 156ff. Holden Day, San Franciso

    Google Scholar 

  • Schaeffer, J.F., Preston, R.L., Curran, P.F. 1973. Inhibition of amino acid transport in rabbit intestine byp-chloromercuriphenyl sulfonic acid.J. Gen. Physiol. 62:131–146

    PubMed  Google Scholar 

  • Spooner, P.M., Edelman, I.S. 1976. Stimulation of Na+ transport across the toad urinary bladder byp-chloromercuribenzene sulfonate.Biochim. Biophys. Acta 455:272–276

    PubMed  Google Scholar 

  • Stymans, A., Van Driessche, W., Borghgraef, R. 1973. Multivalent cations and anionic substitution effects on frog skin.Arch. Int. Physiol. Biochim. 81:166–168

    Google Scholar 

  • Sutherland, R.M., Rothstein, A., Weed, R.I. 1967. Erythrocyte membrane sulfhydryl groups and cation permeability.J. Cell. Physiol. 69:185–198

    PubMed  Google Scholar 

  • Will, P.C., Hopfer, U. 1979. Apparent inhibition of active nonelectrolyte transport by an increased sodium permeability of the plasma membrane.J. Biol. Chem. 254(10):3806–3811

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LaBelle, E.F., Eaton, D.C. Sulfhydryl reagents affect Na+ uptake into toad bladder membrane vesicles. J. Membrain Biol. 71, 39–45 (1983). https://doi.org/10.1007/BF01870673

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870673

Key Words

Navigation