Skip to main content
Log in

Characterization of BADS-binding proteins in epithelial plasma membranes

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

When a fluorescent stilbene was added to epithelial plasma membrane suspension the emission spectrum showed a broad peak containing overlapping emissions resulting from different adducts. By focusing on a specific emission wavelength a common site having a dissociation constant of ≈5μm was calculated in the rat kidney, small intestine, pancreatic islets and shark rectal gland. This binding could be displaced by loop diuretics, (e.g., furosemide with an IC50 of 40 μm), DIDS (k i 1 μm) and thiocyanate. These results pose certain questions such as: (i) whether the evidence for multiple peaks are due to specific interactions representing multiple binding affinities and (ii) whether the binding of stilbene and the observed displacement can be identified on a specific protein. Separating the proteins present in the purified basolateral and brush-border membranes by SDS-PAGE, transfer of these proteins onto introcellulose paper and labeling of the nitrocellulose strips by radioactive BADS (4-benzamido-4′ aminostilbene-2-2′ disulphonic acid) and bumetanide could identify labeled proteins. These experiments showed that whereas some proteins bound either BADS or bumetanide, one protein with a molecular weight of ≈100 or 130,000 D appeared to bind both. This protein was found on the basolateral membrane in the rat kidney cortex and medulla and the shark rectal gland and in the basolateral and brush-border membranes of the small intestine. Displacement of the protein-bound stilbene by loop diuretics could not be quantitated on the nitrocellulose transfer strips for this protein. Antibodies raised against the cytoplasmic fragment of band 3 reacted with the stilbene-labeled 100–130,000 D proteins indicating sufficient immuno-cross-reactivity between the separate species. These experiments involving binding of BADS and bumetanide and cross-reactivity with the human band 3 antibody suggest that these kilodalton proteins could structurally resemble human band 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alper, S.L., Kopito, R.R., Libresco, S.M., Lodish, H.F. 1988. Cloning and characterization of a murine band 3-related cDNA from kidney and from a lymphoid cell line.J. Biol. Chem. 263:17092–17099

    Google Scholar 

  • Berner, W., Kinne, R. 1976. Transport ofp-amino hippuric acid by plasma membranes vesicles isolated from rat kidney cortex.Pfluegers Arch. 361:269–277

    Google Scholar 

  • Brosius, F.C., Alper, S.L., Garcia, A.M., Lodish, H.F. 1989. The major kidney band 3 gene transcript predicts an aminoterminal truncated band 3 polypeptide.J. Biol. Chem. 264:7784–7787

    Google Scholar 

  • Chen, P.Y., Verkman, A.S. 1987. Renal basolateral membrane anion transporter characterized by a fluorescent disulphonic stilbene.J. Membrane Biol. 100:1–12

    Google Scholar 

  • Drenckhahn, D., Oelmann, M., Schaff, P., Wagner, M., Wagner, S. 1987. Band 3 is the basolateral anion exchanger of dark epithelial cells of turtle urinary bladder.Am. J. Physiol. 21:C570-C574

    Google Scholar 

  • Drenckhahn, D., Schluter, K. 1985. Co-localization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney.Science 230:1287–1289

    Google Scholar 

  • Drickamer, L.K. 1980. Arrangement of the red cell anion transport protein in the red cell membrane: Investigation by chemical methods.Ann. NY Acad. Sci. 341:419–464

    Google Scholar 

  • Dubose, T.D., Jr. 1984. Carbonic anhydrase-dependent bicarbonate transport in the kidney.Ann. NY Acad Sci. 29:528–537

    Google Scholar 

  • England, B.J., Gunn, R.B., Steck, T.L. 1980. An immunological study of band 3 the anion transport protein of the human red blood cell membrane.Biochim. Biophys. Acta 623:171–182

    Google Scholar 

  • Epstein, F.H., Silva, P., Stoff, J. 1981. Hormonal control of secretion in the shark rectal gland.Ann. NY Acad. Sci. 372:613–625

    Google Scholar 

  • Erickson, P.F., Minier, L.N., Lasher, R.S. 1982. Quantitative electrophoretic transfer of polypeptides from SDS-PAGE to nitrocellulose sheets: A method for their re-use in immunoautoradiographic detection of antigens.J. Immunol. Methods 51:241–250

    Google Scholar 

  • Eveloff, J., Kinne, R., Kinne-Saffran, E., Murer, H., Silva, P., Epstein, F.H., Stoff, J., Kinter, W.B. 1978. Coupled sodium and chloride transport into plasma membrane vesicles prepared from dogfish retal gland.Pfluegers Arch. 378:87–92

    Google Scholar 

  • Evers, C., Haase, W., Murer, H., Kinne, R. 1978. Properties of brush-border vesicles isolated from rat kidney cortex by Ca precipitation.Membr. Biochem. 1:203–219

    Google Scholar 

  • Fairbanks, G., Steck, T.L., Wallach, D.F.H. 1971. Electrophoretic analysis of the major polypeptides of the human erythrocyte membranes.Biochemistry 10:2606–2616

    Google Scholar 

  • Fukuda, M., Eshday, Y., Tarone, G., Marchesi, V. 1978. Isolation and characterization of peptides derived from the cytoplasmic segment of band 3, the predominant intrinsic membrane protein of the human erythrocyte.J. Biol. Chem. 253:2419–2428

    Google Scholar 

  • Gershoni, J.M., Palade, G.E. 1982. Electrophoretic transfer of proteins from SDS-PAGE to a positively charged membrane filter.Anal. Biochem. 124:396–420

    Google Scholar 

  • Gipson, I.K., Grill, S.M. 1982. A techniques for obtaining sheets of intact rabbit corneal epithelia.Invest. Opthalmol. Vis. Sci. 23:269–273

    Google Scholar 

  • Greger, R., Schlatter, E. 1984. Mechanism of NaCl secretion in rectal gland tubules of spiny dogfish (Squalus acanthias).Pfluegers Arch. 402:364–375

    Google Scholar 

  • Hannafin, E., Kinne-Saffran, E., Friedman, D., Kinne, R. 1983. Presence of a sodium-potassium chloride co-transport system in the rectal gland ofSqualus acanthais.J. Membrane Biol. 75:73–83

    Google Scholar 

  • Karcher, D., Lowenthal, A., Thormar, H., Noppe, M. 1981 Seriological identification of viral antigens after electrophoretic transfer.J. Immunol. Methods 43:175–179

    Google Scholar 

  • Kinsella, J.L., Holohan, P.D., Pessah, N.J., Ross, C. 1979. Isolation of luminal and antiluminal membranes from dog kidney cortex.Biochim. Biophys. Acta 552:468–477

    Google Scholar 

  • Kopito, R.R., Lodish, H.F. 1985. Primary structure and transmembrane orientation of murine anion exchange protein.Nature 316:234–238

    Google Scholar 

  • Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–684

    Google Scholar 

  • Landry, D.W., Akabas, M.H., Redhead, C., Edelman, A., Cragoe, E.J., Al-Aqwati, Q. 1989. Purification and reconstruction of chloride channels from kidney and trachea.Science 244:1469–1472

    Google Scholar 

  • Laskey, R.A., Mills, A.D. 1975. Quantitative film detection of3H and14C in polyacrylamide gels by fluorography.Eur. J. Biochem. 36:333–341

    Google Scholar 

  • Liedtke, C.M., Hopfer, U. 1982. Mechanism of Cl translocation across small intestinal brush-border membrane. II. Demonstration of Cl OH exchange and Cl conductance.Am. J. Physiol. 242:G272-G280

    Google Scholar 

  • Neilsen, F.H., Lernmark, A. 1982. Purification of islets and cells from islets.In: Cell Separation: Methods and Selected Application. Vol. 2, pp. 99–126. T.G. Pretlow, T.P. Pretlow, and A.M. Cheret, editors, Academic, New York

    Google Scholar 

  • Passow, H., Raida, M., Wendel, J., Legrum, B., Bartel, D., Lepke, S., Furito-Kato, S. 1989. Anion transport systems in the mouse erythrocyte: Kinetic studiesin situ and after expression of mouse erythroid band 3 protein in oocytes ofXenopus laevis.Biochem. Soc. Trans. 17:812–815

    Google Scholar 

  • Pasternack, G.R., Anderson, R.A., Letom, T.L., Marchesi, V.T. 1985. Interaction between protein 4.1 and band 3.J. Biol. Chem. 260:3676–3683

    Google Scholar 

  • Pearce, S.F., Zadunaisky, J.A. 1990. Fluorescent stilbene (BADS) binding proteins in epithelia.Am. J. Physiol. 259:C439-C449

    Google Scholar 

  • Scalera, V., Storelli, C., Storelli, J., Joss, C., Hasse, W., Murer, H. 1980. A simple and fast method for the isolation of basolateral plasma membrane from the rat small intestine epithelial cells.Biochem. J. 186:171–181

    Google Scholar 

  • Schmitz, J., Preiser, H., Maestracci, D., Ghosh, B.K., Cerda, J., Crane, R.K. 1975. Purification of the human intestinal brush border membrane.Biochim. Biophys. Acta 323:98–112

    Google Scholar 

  • Steck, T.L., Kant, J.A. 1974. Preparation of impermeable ghosts and inside-out vesicles from human erythrocyte membranes.Methods Enzymol. 31:172–180

    Google Scholar 

  • Steck, T.L., Ramos, B., Strapazon, E. 1976. Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane.Biochemistry 15:1154–1161

    Google Scholar 

  • Swenson, E.R., Maren, T.H. 1984. Effects of acidosis and carbonic anhydrase inhibition in the elasmobranch rectal gland.Am. J. Physiol. 247:F86-F92

    Google Scholar 

  • Towbin, H., Staehelin, T., Gordon, J. 1979. Electrophoretic transfer of proteins from acrylamide gels to nitrocellulose sheets: Some procedures and applications.Proc. Natl. Acad. Sci. USA 76:4350–4354

    Google Scholar 

  • Zadunaisky, J.A. 1966. Active transport of chloride in frog cornea.Am. J. Physiol. 211:506–512

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearce, S.F.A., Zadunaisky, J.A. Characterization of BADS-binding proteins in epithelial plasma membranes. J. Membrain Biol. 123, 235–245 (1991). https://doi.org/10.1007/BF01870406

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870406

Key Words

Navigation