Skip to main content
Log in

Studies on chloride permeability of the skin ofLeptodactylus ocellatus: III. Na+ and Cl effect on electrical phenomena

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

During their flux through the skin of the frogLeptodactylus ocellatus, Na+ and Cl interact with each other. This interaction gives rise to electrical phenomena which are studied in the present paper. The skin is mounted in Na2SO4 Ringer's with 115 mM Na+ on the inside, and a variety of outer solutions,. The osmolarity of all solutions is kept constant at 237.8 mosmol by adding sucrose. When the main anion used on the outside is SO =4 the electrical potential difference (Δψ) rises steadily with the concentration of sodium (Na+)o up to 87 mV, which is reached at about 20mm. Thereafter Δψ remains constant. When the main anion is Cl it is observed that Δψ rises steadily with (NaCl)o with a slope similar to the curve obtained with SO =4 (37 mV per decade), but with a lower intercept attributed to an inward Cl pumping which is characteristic of this frog species. At 2–9 mM (NaCl)o a Cl-specific channel is activated. Further increases of (NaCl)o produce a decrease of Δψ. The specificity of the activation of this site by monovalent cations and its use by monovalent anions is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cereijido, M., Curran, P.F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543

    Google Scholar 

  • Cereijido, M., Herrera, F.C., Flanigan, W., Curran, P.F. 1964. The influence of Na concentration on Na transport across frog skin.J. Gen. Physiol. 47:879

    Google Scholar 

  • Di Bona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12:101

    Google Scholar 

  • Dobson, J.G., Jr., Kidder, G.W., III 1968. Edge damage effect “in vitro” frog skin preparations.Am. J. Physiol. 214:719

    Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2:259

    Google Scholar 

  • Finn, A.L. 1974. Transepithelial, potential difference in the urinary bladder is not due to ionic diffusion.Nature (London) 250:495

    Google Scholar 

  • Fischbarg, J., Zadunaisky J.A., Fisch, F.W. 1967. Dependence of sodium and chloride transport on chloride concentration in isolated frog skin.Am. J. Physiol. 213:963

    Google Scholar 

  • Franz, T.J., Van Bruggen, J.T. 1967. Hyperosmolarity and the net transport of nonelectrolytes in frog skin.J. Gen. Physiol. 50:933

    Google Scholar 

  • Greven, K. 1944. Ein Beitrag zum Problem des Ruhestroms der Froschhaut.Pfluegers Arch. 244:365

    Google Scholar 

  • Helman, S.I., Miller, D.A. 1973. Edge damage effect on electrical measurement of frog skin.Am. J. Physiol. 225:972

    Google Scholar 

  • Huf, E.G. 1972. The role of Cl and other anions in active Na transport in isolated frog skin.Acta Physiol. Scand. 84:366

    Google Scholar 

  • Kidder, G., Cereijido, M., Curran P.F. 1964. Transient changes in electrical potential differences across frog skin.Am. J. Physiol. 207:935

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature, of the frog skin potential.Acta Physiol. Scand. 42:298

    Google Scholar 

  • Leb, D.E., Edwards, C., Lindley, B.D., Hoshiko, T. 1965. Interaction between the effects of inside and outside Na and K on Bullfrog skin potential.J. Gen. Physiol. 49:309

    Google Scholar 

  • Linderholm, H. 1954. On the behaviour of the “sodium pump” in frog skin at various concentrations of Na ions in the solution on the epithelial side.Acta Physiol. Scand. 31:36

    Google Scholar 

  • Lindley, B.D., Hoshiko, T. 1964. The effects of alkali metal-cations and common anions on the frog skin potential.J. Gen. Physiol. 47:749

    Google Scholar 

  • Mandel, L.J., Curran, P.F. 1972. chloride flux via a shunt pathway in frog skin: Apparent exchange diffusion.Biochim. Biophys. Acta 282:258

    Google Scholar 

  • Moreno, J.H., Reisin, I., Rodriguez Boulan, E., Rotunno, C.A., Cereijido, M. 1973. Barriers to Na movement across frog skin.J. Membrane Biol. 11:99

    Google Scholar 

  • Ques-von Petery, M.V., Rotunno, C.A., Cereijido, M. 1978. Studies on chloride permeabilities of the skin ofLeptodactylus ocellatus: I. Na+ and Cl effect on passive movements of Cl.J. Membrane Biol. 42:317

    Google Scholar 

  • Rabito, C.A., Rodriguez Boulan, E., Cereijido, M. 1973. Effect of the composition of the inner bathing solution on transport properties of the frog skin.Biochim. Biophys. Acta 311:630

    Google Scholar 

  • Reuss, L., Finn, A. 1974. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular shunt conductance.J. Gen. Physiol. 64:1

    Google Scholar 

  • Rotunno, C.A., Ques-von Petery, M.V., Cereijido, M. 1978. Studies on chloride permeabilities of the skin ofLeptodactylus ocellatus: II. Na+ and Cl effect on inward movements of Cl.J. Membrane Biol. 42:331

    Google Scholar 

  • Smith, T.C., Hughes, W.D., Huf, E.G. 1971. Movement of CO2 and CO3H across isolated frog skin.Biochim. Biophys. Acta 225:77

    Google Scholar 

  • Smith, T.C., Martin, J.H., Huf, E.F. 1973. Na pool and Na concentration in epidermis of frog skin.Biochim. Biophys. Acta 291:465

    Google Scholar 

  • Steinbach, H.B. 1933. The electrical potential difference across living frog skin.J. Cell Comp. Physiol. 3:1

    Google Scholar 

  • Urakabe, S., Handler, J.S., Orloff, J. 1970. Effect of hypertonicity on permeability properties of the toad bladder.Am. J. Physiol. 218:1179

    Google Scholar 

  • Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484

    Google Scholar 

  • Wade, J.B., Revel, J.P., Di Scala V.A. 1973. Effect of osmotic gradients on intercellular junctions of the toad bladder.Am. J. Physiol. 224:407

    Google Scholar 

  • Zadunaisky, J.A., Candia, O.A. 1962. Active transport of sodium and chloride by the isolated skin of the South American frogLeptodactylus ocellatus.Nature (London) 195:1004

    Google Scholar 

  • Zadunaisky, J.A., Candia, O.A., Chiarandini, D.J. 1963. The origin of the short-circuit current in the isolated skin of the South American frogLeptodactylus ocellatus.J. Gen. Physiol. 47:393

    Google Scholar 

  • Zadunaisky, J.A., Fisch, F.W. 1964. Active and passive chloride movements across isolated amphibian skin.Am. J. Physiol. 207:1010

    Google Scholar 

  • Zylber, E.A., Rotunno, C.A., Cereijido, M. 1973. Ion and water balance in isolated epithelial cells of the abdominal skin of the frogleptodactylus ocellatus.J. Membrane Biol. 13:199

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodríguez. Boulan, E., Ques-von Petery, M.V., Rotunno, C.A. et al. Studies on chloride permeability of the skin ofLeptodactylus ocellatus: III. Na+ and Cl effect on electrical phenomena. J. Membrain Biol. 42, 345–356 (1978). https://doi.org/10.1007/BF01870355

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870355

Keywords

Navigation