Skip to main content
Log in

Intracellular potassium activity measurements in single proximal tubules ofNecturus kidney

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The intracellular potential (E M) and potassium activity (a iK ) ofNecturus proximal tubule were measured with double barreled liquid ion-exchange microelectrodes. Axial heterogeneity along the length of the accessible proximal tubule was observed, withE M anda iK averaging −63.6±6.0 mV and 59.6±8.5 meq/liter in early segments, and −75.4±6.9 mV and 71.5±7.8 meq/liter in late segments. In both segmentsa iK was above electrochemical equlibrium and thus actively accumulated within the cells. Increasing extracellular [K+] in increments from 2.5 to 50.0 meq/liter causedE M to depolarize progressively from −63.9±5.8 to −15.8±3.8 mV, whilea iK increased only slightly from 63.1±7.0 to 69.0±8.7 meq/liter. The response ofE M to increasing extracellular [K+] was reduced when extracellular [Na+] was decreased from 101 to 13 meq/liter. Treatment of tubules with ouabain for 1–2 hr caused a dose-dependent depolarization of the cell potential and a fall in intracellularK +. With 10−4 m ouabainE M decreased from −61.1±7.6 to −28.1±5.6 mV, anda iK decreased from 62.7±5.7 to 10.2±4.0 meq/liter. However, when sodium entry into tubule cells was curtailed by perfusion with low-sodium solutions, or by replacement of chloride with a poorly permeant anion, cellular potassium activity remained unchanged. Taken together, the results of these studies clearly demonstrate that K+ is actively accumulated within the cells of theNecturus proximal tubule and that this accumulation is dependent upon Na+−K+-ATPase. In addition, the basolateral cell membrane has a relatively large K+ conductive pathway, which is subject to modulation by extracellular sodium. Finally, significant axial heterogeneity of the peritubular potential and ofa iK along the proximal tubule were noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bello-Reuss, E. (1982. Electrical properties of the basolateral membrane of the straight portion of the rabbit proximal renal tubule.J. Physiol. (London) 326:49–63

    Google Scholar 

  • Biagi, B., Kubota, T., Sohtell, M., Giebisch, G. 1981a. Intracellular potentials in rabbit proximal tubules perfusedin vitro.Am. J. Physiol. 240:F200-F210

    Google Scholar 

  • Biagi, B., Sohtell, M., Giebisch, G. 1981b. Intracellular potassium activity in the rabbit proximal straight tubule.Am. J. Physiol. 241:F677-F686

    Google Scholar 

  • Boron, W.F., Boulpaep, E.L. 1981. Basolateral bicarbonate transport in isolated, perfused renal tubules of the salamander.Fed. Proc. 40:356 (Abstr.)

    Google Scholar 

  • Boulpaep, E. 1967. Ion permeability of the peritubular and luminal membrane of the renal tubular cell.In: Transport und Funktion Intracellulärer Elektrolyte. F. Krück, editor. pp. 98–107. Urban & Schwarzenberg, Munich-Berlin-Vienna

    Google Scholar 

  • Cemerikić, D., Giebisch, G. 1981. Intracellular sodium activity inNecturus kidney proximal tubule. Abstracts of the International Congress of Nephrology (Athens). p. 71. (Abstr.)

  • Cemerikić, D., Wilcox, C.S., Giebisch, G. 1982. Intracellular potential and K+-activity in rat kidney proximal tubular cells in acidosis and K+ depletion.J. Membrane Biol. 69:159–165

    Google Scholar 

  • Edelman, A., Curci, S., Samarzija, I., Frömter, E. 1978. Determination of intracellular K+ activity in rat proximal tubular cells.Pfluegers Arch. 378:37–45

    Google Scholar 

  • Eisenberg, R.T., Gage, R.W. 1969. Ionic conductances of the surface and transverse tubular membranes of frog sartorius fibers.J. Gen. Physiol. 53:279–297

    Google Scholar 

  • Ericson, A.-C., Spring, K.R. 1982. Volume regulation byNecturus gallbladder: Apical Na+−H+ and Cl−HCO 3 exchange.Am. J. Physiol. 243:C146-C150

    Google Scholar 

  • Forster, J., Steels, P.S., Boulpaep, E.L. 1980. Organic substrate effects on and heterogeneity ofNecturus proximal tubule function.Kidney Int. 17:479–490

    Google Scholar 

  • Fujimoto, M., Kubota, T. 1976. Physiochemical properties of the liquid ion exchanger microelectrode and its application to biological fluids.Jpn. J. Physiol. 26:631–650

    Google Scholar 

  • Giebisch, G. 1961. Measurements of electrical potential differences on single nephrons of the perfusedNecturus kidney.J. Gen. Physiol. 44:659–678

    Google Scholar 

  • Giebisch, G., Malnic, G., DeMello, G.B., DeMello Aires, M. 1977. Kinetics of luminal acidification in cortical tubule of the rat kidney.J. Physiol. (London) 267:571–599

    Google Scholar 

  • Giebisch, G., Sullivan, L.P., Whittembury, G. 1973. Relationship between tubular net sodium reabsorption and peritubular potassium uptake in the perfusedNecturus kidney.J. Physiol. (London) 250:51–74

    Google Scholar 

  • Guggino, W.B., Boulpaep, E.L., Giebisch, G. 1982a. Electrical properties of chloride transport across theNecturus proximal tubule.J. Membrane Biol. 65:185–196

    Google Scholar 

  • Guggino, W.B., London, R., Boulpaep, E.L., Giebisch, G. 1982b. Chloride transport across the basolateral cell membrane of theNecturus proximal tubule: Dependence on bicarbonate and sodium.J. Membrane Biol. (in press)

  • Jacobson, H. 1981. Functional segmentation of the mammalian nephron.Am. J. Physiol. 241:F203-F218

    Google Scholar 

  • Khuri, R. 1979. Intracellular ion activity measurements in kidney tubules.Curr. Top. Membr. Transp. 13:73–92

    Google Scholar 

  • Khuri, R.N., Agulian, S.K., Bogharian, K., Aklanjan, D. 1975. Electrochemical potentials of chloride in proximal renal tubule ofNecturus maculosis.Comp. Biochem. Physiol. A 50:695–700

    Google Scholar 

  • Khuri, R.N., Agulian, S.K., Boulpaep, E.L., Simon, W., Giebisch, G.H. 1978. Changes in the intracellular electrochemical potentials of Na+, K+, and Cl in single cells of the proximal tubules ofNecturus kidney induced by rapid changes in the extracellular perfusion fluids.Drug Res. 28:879–885

    Google Scholar 

  • Khuri, R.N., Hajjar, J.J., Agulian, S.K. 1972. Measurement of intracellular potassium with liquid ion-exchange microelectrodes.J. Appl. Physiol. 32:419–422

    Google Scholar 

  • Kimura, G., Spring, K.R. 1979. Luminal Na+ entry intoNecturus proximal tubule cells.Am. J. Physiol. 236:295–301

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298–308

    Google Scholar 

  • Kubota, T., Biagi, B.A., Giebisch, G. 1982. Effects of acid-base disturbances on basolateral membrane potential and intracellular potassium activity in the proximal tubule ofNecturus. J. Membrane Biol. 72:

  • Kubota, T., Honda, M., Kotera, K., Fujimoto, M. 1980. The effect of diffusible ions on the peritubular membrane potential of proximal tubular cells in perfused bullfrog kidneys.Jpn. J. Physiol. 30:775–790

    Google Scholar 

  • Matsumura, Y., Guggino, W.B., Giebisch, G. 1982. Electrical effects of K+ and HCO 3 on proximal tubule cells ofNecturus: Intracellular K affects K conductance.Kidney Int. 21:281A (Abstr.)

    Google Scholar 

  • Rick, R., Dörge, A., Arnim, E. von, Thurau, K. 1978. Electron microprobe analysis of frog skin epithelium: Evidence for a syncytial sodium transport compartment.J. Membrane Biol. 39:313–331

    Google Scholar 

  • Sackin, H., Boulpaep, E.L. 1981a. Isolated, perfused salamander proximal tubule: Methods, electrophysiology, and transport.Am. J. Physiol. 241:F39-F52

    Google Scholar 

  • Sackin, H., Boulpaep, E.L. 1981b. Isolated perfused salamander proximal tubule: II. Monovalent ion replacement and rheogenic transport.Am. J. Physiol. 241:F540-F555

    Google Scholar 

  • Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through”.Am. J. Physiol. 241:F579-F590

    Google Scholar 

  • Spring, K.R., Giebisch, G. 1977a. Tracer Na fluxes inNecturus proximal tubule.Am. J. Physiol. 232:F461-F470

    Google Scholar 

  • Spring, K.R., Giebisch, G. 1977b. Kinetics of Na+ transport inNecturus proximal tubule.J. Gen. Physiol. 70:307–328

    Google Scholar 

  • Spring, K.R., Kimura, G. 1978. Chloride reabsorption by renal proximal tubules ofNecturus.J. Membrane Biol. 38:233–254

    Google Scholar 

  • Steels, P.S., Boulpaep, E. 1976. Effect of pH on ionic conductances of the proximal tubule epithelium ofNecturus and the role of buffer permeability.Fed. Proc. 35:465 (Abstr.)

    Google Scholar 

  • Taylor, A., Windhager, E.E. 1979. Possible role of cytosolic calcium and Na−Ca exchange in regulation of transepithelial sodium transport.Am. J. Physiol. 236:F505-F512

    Google Scholar 

  • Whittembury, G. 1971. Relationship between sodium extrusion and electrical potentials in kidney cells.In: Electrophysiology of Epithelial Cells. G. Giebisch, editor. pp. 153–178. F.K. Schattauer Verlag, Stuttgart-New York

    Google Scholar 

  • Whittembury, G., Sugino, N., Solomon, A.K. 1961. Ionic permeability and electrical potential differences inNecturus kidney cells.J. Gen. Physiol. 44:689–712

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubota, T., Biagi, B.A. & Giebisch, G. Intracellular potassium activity measurements in single proximal tubules ofNecturus kidney. J. Membrain Biol. 73, 51–60 (1983). https://doi.org/10.1007/BF01870340

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870340

Key Words

Navigation