Skip to main content
Log in

The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The mechanism of voltage-sensitive dye responses was analyzed on sarcoplasmic reticulum vesicles to assess the changes in membrane potential related to Ca2+ transport. The absorbance and fluorescence responses of 3,3′-diethyl-2,2′-thiadicarbocyanine, 3,3′-dimethyl-2,2′-indodicarbocyanine and oxonol VI during ATP-dependent Ca2+ transport are influenced by the effect of accumulated Ca2+ upon the surface potential of the vesicle membrane. These observations place definite limitations on the use of these probes as indicators of ion-diffusion potential in processes which involve large fluctuations in free Ca2+ concentrations. Nile Blue A appeared to produce the cleanest optical signal to negative transmembrane potential, with least direct interference from Ca2+, encouraging the use of Nile Blue A for measurement of the membrane potential of sarcoplasmic reticulumin vivo andin vitro. 1,3-dibutylbarbituric acid (5)-1-(p-sulfophenyl)-3 methyl, 5-pyrazolone pentamethinoxonol (WW 781) gave no optical response during ATP-induced Ca2+ transport and responded primarily to changes in surface potential on the same side of the membrane where the dye was applied. Binding of these probes to the membrane plays a major role in the optical response to potential, and changes in surface potential influence the optical response by regulating the amount of membrane-bound dye. The observations are consistent with the electrogenic nature of ATP-dependent Ca2+ transport and indicate the generation of about 10 mV inside-positive membrane potential during the initial phase of Ca2+ translocation. The potential generated during Ca2+ transport is rapidly dissipated by passive ion fluxes across the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akerman, K.E.O., Wolff, C.H.J. 1979. Charge transfer during Ca2+ uptake by rabbit skeletal muscle sarcoplasmic reticulum vesicles as measured with oxanol VI.FEBS Lett. 100:291–295

    Google Scholar 

  • Baylor, S.M., Chandler, W.K., Marshall, M.W. 1981. Studies in the skeletal musce using optical probes of membrane potential.In: The Regulation of Muscle Contraction: Excitation-Contraction Coupling. A. Grinnell, editor. pp. 97–127. Academic Press, New York

    Google Scholar 

  • Beeler, T.J. 1980a. Relationship between calcium uptake and membrane potential of the sarcoplasmic reticulum.Fed. Proc. 39:1663

    Google Scholar 

  • Beeler, T.J. 1980b. Ca2+ uptake and membrane potential in sarcoplasmic reticulum vesicles.J. Biol. Chem. 255:9156–9161

    Google Scholar 

  • Beeler, T.J., Russell, J.T., Martonosi, A. 1979. Optical probe responses on sarcoplasmic reticulum: Oxacarbocyanines as probes of membrane potential.Eur. J. Biochem. 95:579–591

    Google Scholar 

  • Bezanilla, F., Horowicz, P. 1975. Fluorescence intensity changes associated with contractile activation in frog muscle stained with Nile Blue A.J. Physiol. (London) 246:709–735

    Google Scholar 

  • Cohen, L.B., Salzberg, B.M. 1978. Optical measurement of membrane potential.Rev. Physiol. Biochem. Pharmacol. 83:35–88

    Google Scholar 

  • Conti, F. 1975. Fluorescent probes in nerve membranes.Annu. Rev. Biophys. Bioeng. 4:287–310

    Google Scholar 

  • DiPolo, R., Requena, J., Brinley, F.J., Jr., Mullins, L.J., Scarpa, A., Tiffert, T. 1976. Ionized calcium concentrations in squid axons.J. Gen. Physiol. 67:433–467

    Google Scholar 

  • Duggan, P.F., Martonosi, A. 1970. Sarcoplasmic reticulum. IX. The permeability of sarcoplasmic reticulum membranes.J. Gen. Physiol. 56:147–167

    Google Scholar 

  • Dupont, Y. 1979. Electrogenic calcium transport in the sarcoplasmic reticulum membrane.In: Cation Flux Across Biomembranes. Y. Mukohata and L. Packer, editors. pp. 141–160. Academic Press, New York

    Google Scholar 

  • Fiske, C.H., Subbarow, Y. 1925. The colorimetric determination of phosphorus.J. Biol. Chem. 66:375–400

    Google Scholar 

  • Freedman, J.C., Laris, P.L. 1981. Electrophysiology of cells and organelles: Studies with optical potentiometric indicators.Int. Rev. Cytol. Supp. 12:177–245

    Google Scholar 

  • Gornall, A.G., Bardawill, C.J., David, M.M. 1949. Determination of serum proteins by means of the Biuret reaction.J. Biol. Chem. 177:751–766

    Google Scholar 

  • Haynes, D.H., Chiu, V.C.K. 1978. 1-anilino-8-naphthalenesulfonate as a fluorescent probe of calcium transport: Application to skeletal sarcoplasmic reticulum.Ann. N.Y. Acad. Sci. 307:217–220

    Google Scholar 

  • Jilka, R.L., Martonosi, A.N., Tillack, T.W. 1975. Effect of the purified (Mg2++Ca2+)-activated ATPase of sarcoplasmic reticulum upon the passive Ca2+ permeability and ultrastructure of phospholipid vesicles.J. Biol. Chem. 250:7511–7524

    Google Scholar 

  • Kasai, M., Miyamoto, H. 1976a. Depolarization-induced calcium release from sarcoplasmic reticulum fragments. I. Release of calcium taken up upon using ATP.J. Biochem. 79:1053–1066

    Google Scholar 

  • Kasai, M., Miyamoto, H. 1976b. Depolarization-induced calcium release from sarcoplasmic reticulum fragments. II. Release of calcium incorporated without ATP.J. Biochem. 79:1067–1076

    Google Scholar 

  • Kendrick, N.C. 1976. Purification of arsenazo III, a Ca2+-sensitive dye.Anal. Biochem. 76:487–501

    Google Scholar 

  • Kovacs, L., Rios, E., Schneider, M.F. 1979. Calcium transients and intramembrane charge movement in skeletal muscle fibres.Nature 279:391–396

    Google Scholar 

  • Krasne, S. 1980a. Interactions of voltage-sensing dyes with membranes. I. Steady-state permeability behaviors induced by cyanine dyes.Biophys. J. 30:415–440

    Google Scholar 

  • Krasne, S. 1980b. Interactions of voltage-sensing dyes with membranes. II. Spectrophotometric and electrical correlates of cyanine-dye adsorption to membranes.Biophys. J. 30:441–462

    Google Scholar 

  • Landowne, D. 1974. Changes in fluorescence of skeletal muscle stained with merocyanine associated with excitation-contraction coupling.J. Gen. Physiol. 64:5a

    Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the Folin phenol reagent.J. Biol. Chem. 193:265–275

    Google Scholar 

  • Madeira, V.M.C. 1978. Proton gradient formation during transport of Ca2+ by sarcoplasmic reticulum.Arch. Biochem. Biophys. 185:316–325

    Google Scholar 

  • Martonosi, A., Feretos, R. 1964. Sarcoplasmic reticulum. I. The uptake of Ca2+ by sarcoplasmic reticulum fragments.J. Biol. Chem. 239:648–658

    Google Scholar 

  • Mathias, R.T., Levis, R.A., Eisenberg, R.S. 1980. Electrical models of excitation-contraction coupling and charge movement in skeletal muscle.J. Gen. Physiol. 76:1–31

    Google Scholar 

  • McKinley, D., Meissner, G. 1978. Evidence for a K+, Na+ permeable channel in sarcoplasmic reticulum.J. Membrane Biol. 44:159–186

    Google Scholar 

  • McLaughlin, S. 1977. Electrostatic potentials at membrane-solution interfaces.Curr. Top. Membr. Transp. 9:71–144

    Google Scholar 

  • Meissner, G. 1979. Effect of Ca2+ transport on a membrane potential in sarcoplasmic reticulum.Biophys. J. 25:108a

    Google Scholar 

  • Meissner, G., McKinley, D. 1976. Permeability of sarcoplasmic reticulum membrane. The effect of changed ionic environments on Ca2+ release.J. Membrane Biol. 30:79–98

    Google Scholar 

  • Nakajima, S., Gilai, A., Dingeman, D. 1976. Dye absorption changes in single muscle fibers: An application of an automatic balancing circuit.Pfluegers Arch. 362:285–287

    Google Scholar 

  • Nakamura, H., Jilka, R.L., Boland, R., Martonosi, A.N. 1976. Mechanism of ATP hydrolysis by sarcoplasmic reticulum and the role of phospholipids.J. Biol. Chem. 251:5414–5423

    Google Scholar 

  • Oetliker, H., Baylor, S.M., Chandler, W.K. 1975. Simultaneous changes in fluorescence and optical retardation in single muscle fibres during activity.Nature (London) 257:693–696

    Google Scholar 

  • Russell, J.T., Beeler, T., Martonosi, A. 1979a. Optical probe responses on sarcoplasmic reticulum: oxacarbocyanines.J. Biol. Chem. 254:2040–2046

    Google Scholar 

  • Russell, J.T., Beeler, T., Martonosi, A. 1979b. Optical probe responses on sarcoplasmic reticulum; merocyanine and oxonol dyes.J. Biol. Chem. 254:2047–2052

    Google Scholar 

  • Salama, G., Morad, M. 1976. Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart.Science 191:485–487

    Google Scholar 

  • Salama, G., Scarpa, A. 1978. Optical signals of merocyanine dyes bound to sarcoplasmic reticulum (SR) during Ca2+ transport.Biophys. J. 21:12a

    Google Scholar 

  • Scordilis, S.P., Tedeschi, H., Edwards, C. 1975. Donnan potential of rabbit skeletal muscle myofibrils I: Electrofluorochromometric detection of potential.Proc. Natl. Acad. Sci. USA 72:1325–1329

    Google Scholar 

  • Sims, P.J., Waggoner, A.S., Wang, C., Hoffman, J.F. 1974. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles.Biochemistry 13:3315–3330

    Google Scholar 

  • Somlyo, A.P., Somlyo, A.V., Shuman, H., Sloane, B., Scarpa, A. 1978. Electron probe analysis of calcium compartments in cryo sections of smooth and striated muscles.Ann. N.Y. Acad. Sci. 307:523–544

    Google Scholar 

  • Somlyo, A.V., Shuman, H., Somlyo, A.P. 1977. Composition of sarcoplasmic reticulumin situ by electron probe X-ray microanalysis.Nature 268:556–558

    Google Scholar 

  • Ueno, T., Sekine, T. 1978. Study on calcium transport by sarcoplasmic reticulum vesicles using fluorescence probes.J. Biochem. (Tokyo) 84:787–794

    Google Scholar 

  • Vanderkooi, J., Martonosi, A. 1969. Sarcoplasmic reticulum. VIII. Use of 8-anilino-1-naphthalene sulfonate as conformational probe on biological membranes.Arch. Biochem. Biophys. 133:153–163

    Google Scholar 

  • Vanderkooi, J.M., Martonosi, A. 1971a. Sarcoplasmic reticulum. XII. The interaction of 8-anilino-1-naphthalene sulfonate with skeletal muscle microsomes.Arch. Biochem. Biophys. 144:87–98

    Google Scholar 

  • Vanderkooi, J.M., Martonosi, A. 1971b. Sarcoplasmic reticulum. XIII. Changes in the fluorescence of 8-anilino-1-naphthalene sulfonate during Ca2+ transport.Arch. Biophys. 144:99–106

    Google Scholar 

  • Vergara, J., Bezanilla, F. 1976. Fluorescence changes during electrical activity in frog muscle stained with merocyanine.Nature 259:684–686

    Google Scholar 

  • Vergara, J., Bezanilla, F. 1979. Tubular membrane potentials monitored by a fluorescent dye in cut single muscle fibers.Biophys. J. 25:201a

    Google Scholar 

  • Vergara, J., Bezanilla, F., Salzberg, B.M. 1978. Nile Blue fluorescence signals from cut single muscle fibers under voltage or current clamp conditions.J. Gen. Physiol. 72:775–800

    Google Scholar 

  • Waggoner, A. 1976. Optical probes of membrane potential.J. Membrane Biol. 27:317–334

    Google Scholar 

  • Waggoner, A.S. 1979. Dye indicators of membrane potential.Annu. Rev. Biophys. Bioeng. 8:47–68

    Google Scholar 

  • Zimniak, P., Racker, E. 1978. Electrogenicity of Ca2+ transport catalyzed by the Ca2+-ATPase from sarcoplasmic reticulum.J. Biol. Chem. 253:4631–4637

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beeler, T.J., Farmen, R.H. & Martonosi, A.N. The mechanism of voltage-sensitive dye responses on sarcoplasmic reticulum. J. Membrain Biol. 62, 113–137 (1981). https://doi.org/10.1007/BF01870205

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870205

Key Words

Navigation