Skip to main content
Log in

d-Glucose transport across the apical membrane of the surface epithelium inNereis diversicolor

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Epidermald-glucose transport was investigatedin vivo in the brackishwater polychaete wormNereis diversicolor. Transfer across the apical membrane is rate-limiting tod-glucose uptake, but the cuticle and/or mucus presents some resistance tod-glucose diffusion between bulk solution and transporting membrane. Maximald-glucose influx is about 10−12 mol sec−1 per cm2 of apical plasmalemma. Under natural conditions (∼1 μm d-glucose in the medium), backflux from the epidermal transport pool is negligible, but a significant paracellular outflux may occur.d-glucose influx across the apical membrane is Na+-dependent and completely inhibitable by phlorizin and harmaline; phloretin is less effective, and cytochalasin B has no effect. Influx is moderately depressed by KCN and iodoacetate. α-methyl-d-glucopyranoside is an effective substitute ofd-glucose in transport. Animals acclimated to a low salinity, in which epidermal salt transport takes place, show a marked decrease ofd-glucose transport capacity. On transfer of animals from a high to a low salinity, or vice versa, the corresponding change of influx occurs after a time-lag of at least an hour. Permeability of the epidermis to simple diffusion ofd-glucose is 8×10−8 cm sec−1 (on basis of gross epidermal area).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahearn, G.A., Gomme, J. 1975 Transport of exogenousd-glucose by the integument of a polychaete worm (Nereis diversicolor Müller).J. Exp. Biol. 62:243–264

    Google Scholar 

  • Bamford, D.R., Gingles, R. 1974. Absorption of sugars in the gill of the Japanese oyster,Crassostrea gigas.Comp. Biochem. P Physiol. 49A:637–646

    Google Scholar 

  • Biber, T.U.L., Curran, P.F. 1970. Direct measurement of uptake of sodium at the outer surface of the frog skin.J. Gen. Physiol. 56:83–99

    Google Scholar 

  • Bihler, I., Cybulsky, R. 1973. Sugar transport at the basal and lateral aspect of the small intestinal cell.Biochim. Biophys. Acta 298:429–437

    Google Scholar 

  • Bush, E.T. 1968. A double ratio technique as an aid to selection of sample preparation procedures in liquid scintillation counting.Int. J. Appl. Radiat. Isot. 19:447–452

    Google Scholar 

  • Curran, P.F. 1972. Active transport of amino acids and sugars.Arch Intern. Med. 129:258–269

    Google Scholar 

  • Czech, M.P., Lynn, D.G., Lynn, W.S. 1973. Cytochalasin B sensitive 2-deoxy-d-glucose transport in adipose cell ghosts.J. Biol. Chem. 248:3636–3641

    Google Scholar 

  • Dainty, J., House, C.R. 1966. ‘Unstirred layers’ in frog skin.J. Physiol. (London) 182:66–78

    Google Scholar 

  • Dietschy, J.M., Sallee, V.L., Wilson, F.A. 1971. Unstirred water layers and absorption across the intestinal mucosa.Gastroenterology 61:932–934

    Google Scholar 

  • Dixon, M., Webb, E.C. 1979. Enzymes. Longman, London

    Google Scholar 

  • Erlij, D., Martinez-Palomo, A. 1978. Role of tight junctions in epithelial function.In: Membrane Transport in Biology. G. Giebisch, D.C. Tosteson and H.H. Ussing, editors. Vol III, pp. 27–51. Springer-Verlag, Berlin

    Google Scholar 

  • Ernst, W. von, Goerke, H. 1969. Aufnahme und Umwandlung gelöster Glucose-14C durchLanice conchilega (Polychaeta, Terebellidae).Veroeff. Inst. Meeresforsch. Bremerhaven 11:313–336

    Google Scholar 

  • Evans, E.A. 1976. Self-decomposition of Radiochemicals: Principles, Control, Observations and Effects. The Radiochemical Centre, Amersham. (Review 16)

    Google Scholar 

  • Ferguson, J.C. 1967. Utilization of dissolved exogenous nutrients by the starfishes,Asterias forbesi andHenricia sanguinolenta.Biol. Bull. (Woods Hole, Mass.) 132:161–173

    Google Scholar 

  • Fontaine, A.R., Chia, F.-S. 1968. Echinoderms: An autoradiographic study of assimilation of dissolved organic molecules.Science 161:1153–1155

    Google Scholar 

  • Fox, B.W. 1976. Techniques of sample preparation for liquid scintillation counting.In: Laboratory Techniques in Biochemistry and Molecular Biology. T.S. Work and E. Work, editors. North-Holland Publishing Co., Amsterdam

    Google Scholar 

  • Goldner, A.M., Schultz, S.G., Curran, P.F. 1969. Sodium and sugar fluxes across the mucosal border of rabbit ileum.J. Gen. Physiol. 53:362–383

    Google Scholar 

  • Gomme, J. 1979.d-glucose transport by the integument of a polychaete worm.Acta Physiol. Scand. 105:17A-18A

    Google Scholar 

  • Gomme, J. 1981. Recycling ofd-glucose in collagenous cuticle: A means of nutrient conservation?J. Membrane Biol. 62:47–52

    Google Scholar 

  • Graff, J.C., Wohlhueter, R.M., Plagemann, P.G.W. 1978. Deoxyglucose and 3-O-methylglucose transport in untreated and ATP-depleted Novikoff rat hepatoma cells. Analysis by a rapid kinetic technique, relationship to phosphorylation and effects of inhibitors.J. Cell Physiol. 96:171–188

    Google Scholar 

  • Hald, A. 1952. Statistical Theory with Engineering Applications. Wiley & Sons, New York

    Google Scholar 

  • Hale, L.J. 1958. Biological laboratory Data. Methuen, London

    Google Scholar 

  • Heichal, O., Ish-Shalom, D., Koren, R., Stein, W.D. 1979. Uridine uptake by quiescent and serum-activated nil 8 hamster cells and their murine sarcoma virus-transformed counterparts.Biochim. Biophys. Acta 551:169–186

    Google Scholar 

  • Hicks, S.E., Carey, F.G. 1968. Glucose determination in natural waters.Limnol. Oceanogr. 13:361–363

    Google Scholar 

  • Hopfer, U. 1978. Transport in isolated plasma membranes.Am. J. Physiol. 234:F89-F96

    Google Scholar 

  • Isseroff, H., Read, C.P. 1974. Studies on membrane transport: VIII. Absorption of monosaccharides byFasciola hepatica.Comp. Biochem. Physiol. 47A:141–152

    Google Scholar 

  • Jain, M.K. 1972. The Bimolecular Lipid Membrane: A System. VanNostrand Reinhold, New York

    Google Scholar 

  • Jørgensen, C.B. 1976. August Pütter, August Krogh, and modern ideas on the use of dissolved organic matter in aquatic environments.Biol. Rev. 51:291–328

    Google Scholar 

  • Kimmich, G.A., Randles, J. 1975. A Na+-independent, phloretinsensitive monosaccharide transport system in isolated intestinal epithelial cells.J. Membrane Biol. 23:57–76

    Google Scholar 

  • Kinne, R. 1976. Properties of the glucose transport system in the renal brush border membrane.Curr. Top. Membr. Transp. 8:209–267

    Google Scholar 

  • Kleinzeller, A., Dubyak, G.R., Mullin, J.M. 1976. Renal sugar transport in the winter flounder. II. Galactose transport system.Am J. Physiol. 231:608–613

    Google Scholar 

  • Little, C., Gupta, B.L. 1969. Studies on Pogonophora. III. Uptake of nutrients.J. Exp. Biol. 51:759–773

    Google Scholar 

  • Lotspeich, W.D. 1961. Phlorizin and the cellular transport of glucose.Harvey Lect. 56:63–91

    Google Scholar 

  • Lotspeich, W.D., Keller, D.M. 1956. A study of some effects of phlorizin on the metabolism of kidney tissuein vitro.J. Biol. Chem. 222:843–853

    Google Scholar 

  • Mandel, L.J., Curran, P.F. 1972. Response of the frog skin to steady-state voltage clamping. I. The shunt pathway.J. Gen. Physiol. 59:503–518

    Google Scholar 

  • McNutt, N.S., Weinstein, R.S. 1973. Membrane ultrastructure at mammalian intercellular junctions.Prog. Biophys. Mol. Biol. 26:47–101

    Google Scholar 

  • Munck, B.G. 1976. Amino acid transport.In: Protein Metabolism and Nutrition. D.J.A. Cole et al., editors. pp. 73–95. European Association for Animal Production, Publ. no. 16

  • Murer, H., Hopfer, U., Kinne-Saffran, E., Kinne, R. 1974. Glucose transport in isolated brush-border and lateral basal plasma membrane vesicles from intestinal epithelial cells.Biochim. Biophys. Acta 345:170–179

    Google Scholar 

  • Newey, H., Parsons, B.J., Smyth, D.H. 1959. The site of action of phlorrhizin in inhibiting intestinal absorption of glucose.J. Physiol. (London) 148:83–92

    Google Scholar 

  • Pappas, P.W., Read, C.P. 1975. Membrane transport in helminth parasites: A review.Exp. Parasitol. 37:469–530

    Google Scholar 

  • Parsons, B.J., Smyth, D.H., Taylor, C.B. 1958. The action of phlorrhizin on the intestinal transfer of glucose and water in vitro.J. Physiol. (London) 144:387–402

    Google Scholar 

  • Pequignat, E. 1973. A kinetic and autoradiographic study of the direct assimilation of amino acids and glucose by organs of the musselMytilus edulis.Mar. Biol. 19:227–244

    Google Scholar 

  • Potts, W.T.W., Parry, G. 1964. Osmotic and Ionic Regulation in Animals. Pergamon Press, Oxford

    Google Scholar 

  • Read, C.P., Rothman, A.H., Simmons, J.E., Jr. 1963. Studies on membrane transport, with special reference to the parasite-host integration.Ann. N.Y. Acad. Sci. 113:154–205

    Google Scholar 

  • Richards, K.S. 1978. Epidermis and cuticle.In: Physiology of Annelids. P.J. Mill, editor. Academic Press, London

    Google Scholar 

  • Schlichter, D. 1975. Die Bedeutung in Meerwasser gelöster Glucose für die Ernährung vonAnemonia sulcata (Coelenterata: Anthozoa).Mar. Biol. 29:283–293

    Google Scholar 

  • Schöttler, U. 1978. Investigations of the anaerobic metabolism of the polychaete worm,Nereis diversicolor M.J. Comp. Physiol. 125:185–189

    Google Scholar 

  • Schulte, G.J., Clark, W., Lawrence, A.L. 1973. Active transport ofd-glucose dissolved in sea water by the postlarvae of the oyster,Crassostrea gigas.Tex. Rep. Biol. Med. 31:107

    Google Scholar 

  • Schultz, S.G. 1977. Sodium-coupled solute transport by small intestine: A status report.Am. J. Physiol. 233:E249-E254

    Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637–718

    Google Scholar 

  • Sepers, A.B.J. 1977. The utilization of dissolved organic compounds in aquatic environments.Hydrobiologia 52:39–54

    Google Scholar 

  • Sepulveda, F.V., Robinson, J.W.L. 1974. Harmaline, a potent inhibitor of sodium-dependent transport.Biochim. Biophys. Acta 373:527–531

    Google Scholar 

  • Sepulveda, F.V., Robinson, J.W.L. 1975. New characteristics of harmaline inhibition of intestinal transport systems.Naunyn-Schmiedeberg's Arch Pharmacol. 291:201–212

    Google Scholar 

  • Silverman, M. 1976. Glucose transport in the kidney.Biochim. Biophys. Acta 457:303–351

    Google Scholar 

  • Southward, A.J., Southward, E.C. 1970. Observations on the role of dissolved organic compounds in the nutrition of benthic invertebrates. Experiments on three species of Pogonophora.Sarsia 45:69–96

    Google Scholar 

  • Starling, J.A., Fisher, F.M. 1975. Carbohydrate transport inMoniliformis dubius (Acanthocephala). I. The kinetics and specificity of hexose absorption.J. Parasitol. 61:977–990

    Google Scholar 

  • Stein, W.D. 1967. The Movement of Molecules across Cell Membranes. Chapters 5 and 8. Academic Press, New York

    Google Scholar 

  • Sten-Knudsen, O. 1978. Passive transport processes.In: Membrane Transport in Biology, Vol. I, p. 5–37. G. Giebisch, D.C. Tosteson and H.H. Ussing, editors. Springer-Verlag, Berlin

    Google Scholar 

  • Stephens, G.C. 1962. Uptake of organic material by aquatic invertebrates. I. Uptake of glucose by the solitary coral,Fungia scutaria.Biol. Bull. (Woods Hole, Mass.) 123:648–660

    Google Scholar 

  • Stephens, G.C. 1964. Uptake of organic material by aquatic invertebrates. III. Uptake of glycine by brackish-water annelids.Biol. Bull. (Woods Hole, Mass.) 126:150–162

    Google Scholar 

  • Stephens, G.C. 1967. Dissolved organic material as a nutritional source for marine and estuarine invertebrates.In: Estuaries. G.H. Lauff, editor. pp. 367–373. American Association for the Advancement of Science, Washington

    Google Scholar 

  • Stephens, G.C. 1972. Amino acid accumulation and assimilation in marine organisms.In: Nitrogen Metabolism and the Environment. J.W. Campbell and L. Goldstein, editors. pp. 155–184. Academic Press, New York

    Google Scholar 

  • Stirling, C.E. 1967. High-resolution radioautography of phlorizin-3H in rings of hamster intestine.J. Cell Biol. 35:605–618

    Google Scholar 

  • Swift, M.L., Conger, K., Exler, J., Lakshmanan, S. 1975. Uptake of glucose and orthophosphate by the American oyster.Life Sci. 17:1679–1684

    Google Scholar 

  • Ullrich, K.J. 1979. Sugar, amino acid and Na+ cotransport in the proximal tubule.Annu. Rev. Physiol. 41:181–195

    Google Scholar 

  • Ussing, H.H., Leaf, A. 1978. Transport across multimembrane Systems.In: Membrane Transport in Biology, Vol. III. G. Giebisch, D.C. Tosteson and H.H. Ussing, editors. pp. 1–23. Springer-Verlag, Berlin

    Google Scholar 

  • Vinten, J. 1978. Cytochalasin B inhibition and temperature dependence of 3-O-methylglucose transport in fat cells.Biochim. Biophys. Acta 511:259–273

    Google Scholar 

  • Wangersky, P.J. 1978. Production of dissolved organic matter.In: Marine Ecology. O. Kinne, editor. Vol. I, p. 3. Wiley & Sons, New York

    Google Scholar 

  • Weast, R.C. 1969. Handbook of Chemistry and Physics, 50th ed. The Chemical Rubber Co., Cleveland, Ohio

    Google Scholar 

  • Wilson, D.B. 1978. Cellular transport mechanisms.Annu. Rev. Biochem. 47:933–965

    Google Scholar 

  • Wood, R.E., Wirth, F.P., Morgan, H.E. 1968. Glucose permeability of lipid bilayer membranes.Biochim. Biophys. Acta 163:171–178

    Google Scholar 

  • Wright, E.M., Pietras, R.J. 1974. Routes of nonelectrolyte permeation across epithelial membranes.J. Membrane Biol. 17:293–312

    Google Scholar 

  • Yerokhin, V. Ye. 1971. The accumulation and utilization of algal metabolites dissolved in sea water by the medusaTiaropsis multicirrata (in Russian).Nauchn. Dokl. Vyssh. Shk. Biol. Nauki 10:24–29 (Department of Environment, Canada — Fisheries and Marine Service Translation Series no. 3187, 1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gomme, J. d-Glucose transport across the apical membrane of the surface epithelium inNereis diversicolor . J. Membrain Biol. 62, 29–46 (1981). https://doi.org/10.1007/BF01870197

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01870197

Key words

Navigation