Skip to main content
Log in

Long-lasting inward current in snail neurons in barium solutions in voltage-clamp conditions

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The inward membrane current was recorded under voltage clamp from nonbursting neurons of the snailHelix pomatia in Na-free solutions containing Ba ions but no other divalent cations. The inward current was separated into two components: (i) an early fast inactivating component and (ii) a smaller long-lasting component. Both components were dependent on the external Ba concentration. It is concluded that both components of the inward current are carried by Ba ions. The activation of the early fast inactivating component of the inward current occurred at more positive membrane potential than that of the long-lasting component. The shape of the inactivation curve for the peak value of the inward current was similar to that for the long-lasting component. The potentials of half-inactivation for the peak value of the inward current and for its long-lasting component were −28 and −22 mV, respectively. The blocking effect of Co++ on the early fast inactivating component was substantially greater. In some neurons after treatment with 15mm Co++ only the long-lasting component was recorded. The activation kinetics of the long-lasting component of the inward current were analyzed using the Hodgkin-Huxley equations. The results could be explained by assuming that two components of the inward current in Na−Ca-free solution with Ba ions flowed through the two different channels. The significance of the long-lasting inward current for the normal spike generation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barker, J.L., Gainer, H. 1975. Studies on bursting pacemaker potential activity in molluscan neurons. I. Membrane properties and ionic contributions.Brain Res 83:486

    Google Scholar 

  • Bernard, C., Cardinaux, J.C., Potreau, D. 1976. Long-duration responses and slow inward current obtained from isolated skeletal fibres with barium ions.J. Physiol. (London) 256:18P

    Google Scholar 

  • Blaustein, M.P., Goldman, D.E. 1968. The action of certain polyvalent cations on the voltage-clamped lobster axon.J. Gen. Physiol. 51:279

    Google Scholar 

  • Chamberlain, S.G., Kerkut, G.A. 1969. Voltage clamp analysis of the sodium and calcium inward currents in snail neurons.Comp. Biochem. Physiol. 28:787

    Google Scholar 

  • Connor, J.A., Stevens, C.F. 1971. Voltage clamp studies of a transient outward membrane current in gastropod neural somata.J. Physiol. (London) 213:21

    Google Scholar 

  • D'Arrigo, J.S. 1973. Possible screening of surface charges on crayfish axons by polyvalent metal ions.J. Physiol. (London) 231:117

    Google Scholar 

  • Eckert, R., Lux, H.D. 1976. A voltage-sensitive persistant calcium conductance in neuronal somata of Helix.J. Physiol. (London) 254:129

    Google Scholar 

  • Fatt, P., Ginsborg, B.L. 1958. The ionic requirements for the production of action potentials in crustacean muscle fibres.J. Physiol. (London) 142:516

    Google Scholar 

  • Geduldig, D., Gruener, R. 1970. Voltage clamp of theAplysia giant neurone: Early sodium and calcium currents.J. Physiol. (London) 211:217

    Google Scholar 

  • Geduldig, D., Junge, D. 1968. Sodium and calcium components of action potentials in theAplysia giant neurons.J. Physiol. (London) 199:347

    Google Scholar 

  • Gerasimov, V.D., Kostyuk, P.G., Maiskii, V.A. 1965. Influence of divalent cations on electrical characteristics of giant neurone membrane.Biofizika 10:447 (in Russian)

    Google Scholar 

  • Gola, M. 1972. La conductance potassique des neurones d'Helix en relation avec la rectification anomale.C.R. Acad. Sci. 274:1579

    Google Scholar 

  • Gola, M. 1974. Neurones à ondes-salves des mollusques. Variations cycliques lentes des conductances ioniques.Pfluegers Arch. Gesamte Physiol. 352:17

    Google Scholar 

  • Hagiwara, S. 1973. Ca spike.Adv. Biophys. 4:71

    Google Scholar 

  • Hagiwara, S., Fukuda, J., Eaton, D.C. 1974. Membrane currents carried by Ca, Sr and Ba in barnacle muscle fiber during voltage clamp.J. Gen. Physiol. 63:564

    Google Scholar 

  • Hagiwara, S., Kusano, K., Saito, N. 1961. Membrane changes ofOnchidium nerve cell in potassium-rich media.J. Physiol. (London) 155:170

    Google Scholar 

  • Hagiwara, S., Naka, K. 1964. The initiation of spike potential in barnacle muscle fibers under low intracellular Ca++.J. Gen. Physiol. 48:141

    Google Scholar 

  • Hagiwara, S., Ozawa, S., Sand, O. 1975. Voltage clamp analysis of two inward current mechanisms in the egg call membrane of a starfish.J. Gen. Physiol. 65:517

    Google Scholar 

  • Hagiwara, S., Saito, N. 1959a. Membrane potential change and membrane current in supramedullary nerve cell of puffer.J. Neurophysiol. 22:204

    Google Scholar 

  • Hagiwara, S., Saito, N. 1959b. Voltage current relations in nerve cell membranes ofOnchidium verruculatum.J. Physiol. 148:161

    Google Scholar 

  • Hagiwara, S., Takahashi, K. 1967. Surface density of calcium ions and calcium spikes in the barnacle muscle membrane.J. Gen. Physiol. 50:583

    Google Scholar 

  • Hille, B. 1975. Ionic selectivity, saturation, and block in sodium channels. A four-barrier model.J. Gen. Physiol. 66:535

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952a. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo.J. Physiol. (London) 116:497

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F. 1952b. A quantitative description of membrane current and its application to conduction and excitation in nerve.J. Physiol. (London) 117:500

    Google Scholar 

  • Koketsu, K., Nishi, S. 1969. Calcium and action potentials of bullfrog sympathetic ganglion cells.J. Gen. Physiol. 53:608

    Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Doroshenko, P.A. 1974. Calcium currents in snail neurones. II. The effect of external calcium concentration on the calcium inward current.Pfluegers Arch. Gesamte Physiol. 348:95

    Google Scholar 

  • Kostyuk, P.G., Krishtal, O.A., Pidoplichko, V.I. 1975. Effect of internal fluoride and phosphate on membrane currents during intracellular dialysis of nerve cells.Nature (London) 257:692

    Google Scholar 

  • Krnjevic, K., Pumain, R., Renaud, L. 1971. Effects of Ba2+ and tetraethylammonium on cortical neurones.J. Physiol. (London) 215:223

    Google Scholar 

  • Magura, I.S., Kiss, I., Krishtal, O.A. 1971. Current-voltage relations of the giant neurone soma membrane ofLymnea stagnalis.Acta Physiol. Acad. Sci. Hung. 40:221

    Google Scholar 

  • Magura, I.S., Zamekhovsky, I.Z. 1973. Repetitive firing in molluscan giant neurones.J. Exp. Biol. 59:767

    Google Scholar 

  • Meech, R.W. 1974. The sensitivity ofHelix aspersa neurones to injected calcium ions.J. Physiol. (London) 237:259

    Google Scholar 

  • Meech, R.W., Standen, N.B. 1975. Potassium activation inHelix aspersa neurones under voltage clamp. A component mediated by calcium influx.J. Physiol. (London) 249:211

    Google Scholar 

  • Meves, H. 1968. The ionic requirements for production of action potentials inHelix pomatia neurones.Pfluegers Arch. Gesamte Physiol. 304:215

    Google Scholar 

  • Mullins, L.F. 1961. The macromolecular properties of excitable membranes.Ann. N. Y. Acad. Sci. 94:390

    Google Scholar 

  • Narahashi, T. 1966. Dependence of excitability of cockroach giant axons on external divalent cations.Comp. Biochem. Physiol. 19:759

    Google Scholar 

  • Neher, E. 1971. Two fast transient current components during voltage clamp on snail neurons.J. Gen. Physiol. 58:36

    Google Scholar 

  • Neher, E., Lux, H.D. 1972. Differential action of TEA+ on two K+-current components of a molluscan neurone.Pfluegers Arch. Gesamte Physiol. 336:87

    Google Scholar 

  • Okamoto, H., Takahashi, K., Yoshii, M. 1976. Two components of the calcium current in the egg cell membrane of the tunicate.J. Physiol. (London) 255:527

    Google Scholar 

  • Reuter, H. 1973. Divalent cations as charge carriers in excitable membranes.Prog. Biophys. Mol. Biol. 26:3

    Google Scholar 

  • Sakharov, D.A. 1974. The Genealogy of Neurones. Nauka, Moscow (in Russian)

    Google Scholar 

  • Sattelle, D.B., Lane, N.J. 1972. Architecture of gastroped central nervous tissues in relation to ionic movements.Tissue Cell 4:253

    Google Scholar 

  • Sperelakis, N., Lehmkuhl, D. 1966. Ionic interconversion of pacemaker and non-pacemaker cultered chick heart cells.J. Gen. Physiol. 49:867

    Google Scholar 

  • Sperelakis, N., Schneider, M.F., Harris, E.J. 1967. Decreased K+ conductance produced by Ba++ in frog sartorius fibers.J. Gen. Physiol. 50:1565

    Google Scholar 

  • Standen, N.B. 1975a. Calcium and sodium ions as charge carriers in the action potential of an identified snail neurone.J. Physiol. (London) 249:241

    Google Scholar 

  • Standen, N.B. 1975b. Voltage-clamp studies of the calcium inward current in an identified snail neurone: Comparison with the sodium inward current.J. Physiol. (London) 249:253

    Google Scholar 

  • Wald, F. 1972. Ionic differences between somatic and axonal action potentials in snail giant neurones.J. Physiol. (London) 220:267

    Google Scholar 

  • Werman, R., Grundfest, H. 1961. Graded and all-or-none electrogenesis in arthropod muscle. II. The effects of alkali-earth and onium ions on lobster muscle fibers.J. Gen. Physiol. 44:997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Magura, I.S. Long-lasting inward current in snail neurons in barium solutions in voltage-clamp conditions. J. Membrain Biol. 35, 239–256 (1977). https://doi.org/10.1007/BF01869952

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869952

Keywords

Navigation