Skip to main content
Log in

Transients in toad skin: Short circuit current and ionic fluxes related to inner sodium substitution by monovalent cations

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

When the Na electrochemical potential difference across the skin (ΔμNa) is altered by perturbing the transmembrane electrical potential difference or the external Na concentration, effects on transport and associated oxygen consumption can be described by the formalism of linear nonequilibrium thermodynamics (Vieira, Caplan & Essig, 1972,J. Gen. Physiol. 59:77; Danisi & Lacaz-Vieira, 1974,J. Gen. Physiol. 64:372; Procópio and Lacaz-Vieira, 1977,J. Membrane Biol. 35:219). We now show that with modifications of ΔμNa by substitution of Li or choline for Na in the inner bathing solution, this formalism is no longer applicable. Inner Na by K substitution ((Na×K) i ) causes profound alterations in short-circuit current (SCC),J inNa , K efflux (J effK ) and PD. SCC drops transiently after (Na×K) i in Cl and in SO4 media, increasing subsequently. In Cl medium, following the initial transient, there is a late decline in SCC toward a steady state. The rate of SCC decline in Cl medium is more pronounced than that observed in SO4 medium. (Na×K) i causes a transient increase inJ inNa with a peak synchronous to the minimum in SCC, both in Cl and in SO4 media. This was interpreted as due to depolarization of the inner membrane. In SO4 medium, following the peak observed after (Na×K) i J inNa drops, to increase again toward a steady state in which SCC andJ inNa are not statistically different, resembling the control condition before (Na×K) i . In Cl medium, however, theJ inNa steady state is approximately 100% higher than SCC. This difference is due to an important K efflux (J effK ), which builds up progressively after the substitution. The apparent K permeability [J effK /(K i )] is of comparable magnitude in Cl and in SO4 media before (Na×K) i , the apparent K permeability increases one order of magnitude as compared to the control condition before the ionic substitution. In Cl medium, the high levels ofJ inNa and ofJ effK observed in the steady state after (Na×K) i were interpreted as being a consequence of cell swelling. SCC and PD follow very different temporal patterns after (Na×K) i which are characterized by transients in SCC and a simple fall in PD. Reasons for these differences are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aceves, J., Erlij, D. 1971. Sodium transport across the isolated epithelium of frog skin.J. Physiol. (London) 212:195

    Google Scholar 

  • Biber, T.U.L., Sanders, M.L. 1973. Influence of transepithelial potential difference on the sodium uptake at the outer surface of the isolated frog skin.J. Gen. Physiol. 61:529

    PubMed  Google Scholar 

  • Bricker, N.S., Biber, T.U.L., Ussing, H.H. 1963. Exposure of the isolated frog skin to high potassium concentration at the internal surface. I. Bioelectric phenomena and sodium transport.J. Clin. Invest. 42:88

    Google Scholar 

  • Cereijido, M., Curran, P.F. 1965. Intracellular electrical potentials in frog skin.J. Gen. Physiol. 48:543

    PubMed  Google Scholar 

  • Cereijido, M., Rabito, C.A., Rodriguez-Boulán, E., Rotunno, C.A. 1974. The sodiumtransporting compartment of the epithelium of frog skin.J. Physiol. (London) 237:555

    Google Scholar 

  • Cereijido, M., Rotunno, C.A. 1971. The effect of antidiuretic hormone on Na movement across frog skin.J. Physiol. (London) 213:119

    Google Scholar 

  • Danisi, G., Lacaz-Vieira, F. 1974. Nonequilibrium thermodynamic analysis of the coupling between active sodium transport and oxygen consumption.J. Gen. Physiol. 64:372

    PubMed  Google Scholar 

  • Essig, A., Caplan, S.R. 1968. Energetics of active sodium transport processes.Biophys. J. 8:1434

    PubMed  Google Scholar 

  • Finn, A.L. 1974. Transepithelial potential in toad urinary bladder is not due to ionic diffusion.Nature (London) 250:495

    Google Scholar 

  • Finn, A.L. 1976. Changing concepts of transepithelial sodium transport.Physiol. Rev. 56:453

    PubMed  Google Scholar 

  • Finn, A.L., Hutton, S.A. 1974. The kinetics of sodium transport in the toad urinary bladder. III. The role of potassium.J. Membrane Biol. 17:253

    Google Scholar 

  • Finn, A.L., Reuss, L. 1975. Effects of changes in the composition of the serosal solution on the electrical properties of the toad urinary bladder epithelium.J. Physiol. (London) 250:541

    Google Scholar 

  • Finn, A.L., Rockoff, M.L. 1971. The kinetics of sodium transport in the toad bladder. I. Determination of the transport pool.J. Gen. Physiol. 57:326

    PubMed  Google Scholar 

  • Frazier, H.S., Leaf, A. 1963. The electrical characteristics of active sodium transport in the toad bladder.J. Gen. Physiol. 46:491

    PubMed  Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    PubMed  Google Scholar 

  • Lipton, P. 1972. Effect of changes in osmolarity on sodium transport across isolated toad bladder.Am. J. Physiol. 222:821

    PubMed  Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975. The sodium transport pool in toad urinary bladder epithelial cells.J. Membrane Biol. 20:365

    Google Scholar 

  • MacRobbie, E.A.C., Ussing, H.H. 1961 Osmotic behaviour of the epithelial cells of frog skin.Acta Physiol. Scand. 53:348

    PubMed  Google Scholar 

  • Mandel, L.J., Curran, P.F. 1973. Response of the frog skin to steady-state voltage clamping. II. The active pathway.J. Gen. Physiol. 62:1

    Google Scholar 

  • Moreno, J.H., Reisin, I.L., Rodriguez-Boulán, E., Rotunno, C.A., Cereijido, M. 1973. Barriers to sodium movement across frog skin.J. Membrane Biol. 11:99

    Google Scholar 

  • Nellans, H.N., Schultz, S.G. 1976. Relations among transepithelial sodium transport, potassium exchange, and cell volume in rabbit ileum.J. Gen. Physiol. 68:441

    PubMed  Google Scholar 

  • Pour-Hassani, H., Finn, A.L. 1974. Effect of serosal K−Na substitution on Na and K kinetics in toad bladder.Fed. Proc. 33:216

    Google Scholar 

  • Procópio, J., Lacaz-Vieira, F. 1977. Ionic exchanges in isolated and open-circuited load skin.J. Membrane Biol. 35:219

    Google Scholar 

  • Rabito, C.A., Rodriguez-Boulán, E., Cereijido, M. 1973. Effect of the composition of the inner bathing solution on transport properties of the frog skin.Biochim. Biophys. Acta 311:630

    PubMed  Google Scholar 

  • Rawlins, F., Mateu, L., Fragachan, F., Whittembury, G. 1970. Isolated toad skin epithelium: Transport characteristics.Pfluegers Arch. 316:64

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976a. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. I. Effects of different medium potassium concentrations on electrical parameters.J. Membrane Biol. 26:217

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976b. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. II. Effects of different medium potassium concentrations on epithelial cell composition.J. Membrane Biol. 26:239

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976c. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. III. Exchangeability of epithelial cellular potassium.J. Membrane Biol. 26:269

    Google Scholar 

  • Saito, T., Essig, A., Caplan, S.R. 1973. The effect of aldosterone on the energetics of sodium transport in the frog skin.Biochim. Biophys. Acta 318:371

    Google Scholar 

  • Snell, F.M., Chowdhury, T.K. 1965. Contralateral effects of sodium and potassium on the electrical potential in frog skin and toad bladder.Nature (London) 207:45

    Google Scholar 

  • Ussing, H.H. 1965 Relationship between osmotic reactions and active sodium transport in the frog skin epithelium.Acta Physiol. Scand. 63:141

    PubMed  Google Scholar 

  • Ussing, H.H., Biber, T.U.L., Bricker, N.S. 1965. Exposure of the isolated frog skin to high potassium concentrations at the internal surface. II. Changes in epithelial cell volume, resistance, and response to antidiuretic hormone.J. Gen Physiol. 48:425

    PubMed  Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110

    PubMed  Google Scholar 

  • Vieira, F.L., Caplan, S.R., Essig, A. 1972. Energetics of sodium transport in frog skin. II. The effects of electrical potential on oxygen consumption.J. Gen. Physiol. 59:77

    PubMed  Google Scholar 

  • Whittembury, G. 1964. Electrical potential profile of the toad skin epithelium.J. Gen. Physiol. 47:795

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varanda, W.A., Vieira, F.L. Transients in toad skin: Short circuit current and ionic fluxes related to inner sodium substitution by monovalent cations. J. Membrain Biol. 39, 369–385 (1978). https://doi.org/10.1007/BF01869899

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869899

Keywords

Navigation