Skip to main content
Log in

Determination of charge, stoichiometry and reaction constants fromI–V curve studies on a K+ transporter inNitella

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

InNitella cells with low pump activity, the electrical characteristics of membrane transport are mainly determined by K+ transport. Current-voltage curves were measured at outside K+ concentrations ranging from 0.1 to 100 mol m−3. Above 1 mol m−3, current saturated at positive and at very negative potentials. It was found that theseI–V curves could be fitted by a Class 1, case 1 reaction kinetic model, which is a cyclic reaction scheme with one pair of rate constants sensitive to membrane potential (Class I) and neutral transporter (or electrically charged substrate-transporter complex, case I). The analysis revealed the relative rate constants of a 3-state model. From the linear dependence of the rate constant of substrate binding (k 32) on [K+] a′ the stoichiometry of 1 K+/cycle was obtained. The complex transporter substrate is very unstable (very high value ofK 23) resulting in a very low density of this state and in what can be called Mitchellian behavior; namely, the driving forces resulting from the electrical and from the concentration gradient can hardly be distinguished.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe, S., Takeda, J. 1986. The membrane potential of enzymatically isolatedNitella expansa protoplasts as compared with their intact cells.J. Exp. Bot. 37:238–252

    Google Scholar 

  • Beilby, M.J. 1984. Current-voltage characteristics of the proton pump atChara plasmalemma: I. pH dependence.J. Membrane Biol. 81:113–125

    Google Scholar 

  • Beilby, M.J. 1985. Potassium channels atChara plasmalemma.J. Exp. Bot. 36:228–239

    Google Scholar 

  • Beilby, M.J. 1986a. Potassium channels and different states ofChara plasmalemma.J. Membrane Biol. 89:241–249

    Google Scholar 

  • Beilby, M.J. 1986b. Factors controlling the K+-conductance inChara australis. XI. Chloride fluxes.Aust. J. Biol. Sci. 21:243–254

    Google Scholar 

  • Fisahn, J., Hansen, U.P. 1986. The influence of temperature on a K+-channel and on a current-source inNitella.J. Exp. Bot. 37:440–460

    Google Scholar 

  • Fisahn, J., Mikschl, E., Hansen, U.P. 1986. Separate oscillations of a K+-channel and of a current-source inNitella.J. Exp. Bot. 37:34–47

    Google Scholar 

  • Gradmann, D., Hansen, U.P., Long, W.S., Slayman, C.L., Warncke, J. 1978. Current-voltage relationships for the plasma membrane and its principal electrogenic pump inNeurospora crassa: I. Steady-state conditions.J. Membrane Biol. 39:333–367

    Google Scholar 

  • Gradmann, D., Hansen, U.P., Slayman, C.L. 1982. Reaction kinetic analysis of current-voltage relationships for electrogenic pumps inNeurospora andAcetabularia.Curr. Top. Membr. Transp. 16:257–276

    Google Scholar 

  • Hansen, U.P. 1986. Reaction kinetic models of pumps, cotransporters and channels.In: Ion Channels and Electrogenic Pumps in Biomembranes. Abstracts of Lectures and Posters. pp. L13-L33. Osaka University, Japan

    Google Scholar 

  • Hansen, U.P., Gradmann, D., Sanders, D., Slayman, C.L. 1981. Interpretation of current-voltage relationships for “active” ion transport systems: I. Steady-state reaction-kinetic analysis of class-I mechanisms.J. Membrane Biol. 63:165–190

    Google Scholar 

  • Hansen, U.P., Gradmann, D., Sanders, D., Tittor, J., Slayman, C.L. 1984. Steady-state and non-steady state models of membrane transport.In: Membrane Transport in Plants. J. Cram, K. Janacek, R. Rybova, and K. Sigler, editors. pp. 33–38. Akademia, Prague

    Google Scholar 

  • Keifer, D.W., Lucas, W.J. 1982. Potassium channels inChara corallina. Control and interaction with the electrogenic H+-pump.Plant Physiol. 69:781–788

    Google Scholar 

  • Kohler, H.H., Heckmann, K. 1979. Unidirectional fluxes in saturated single-file pores of biological and artificial membranes. I. Pores containing no more than one vacancy.J. Theor. Biol. 79:381–401

    Google Scholar 

  • Köhler, K., Steigner, W., Simonis, W., Urbach, W. 1985. Potassium channels ofEremosphaera viridis. I. Influence of cations and pH on resting potential and an action potential-like signal.Planta 166:490–499

    Google Scholar 

  • Lühring, H. 1986. Recording of single K+-channels in the membranes of cytoplasmic drop ofChara australis.Protoplasma 133:19–29

    Google Scholar 

  • Mitchell, P. 1966. Chemiosmotic coupling in oxidative and photosynthetic phosphorylation.Biol. Rev. 41:455–502

    Google Scholar 

  • Mummert, H., Hansen, U.P., Gradmann, D. 1981. Current-voltage curve of electrogenic Cl pump predicts voltage-dependent Cl efflux inAcetabularia.J. Membrane Biol. 62:139–148

    Google Scholar 

  • Sanders, D., Hansen, U.P. 1981. Mechanism of Cl-transport at the plasma membrane ofChara corallina: II. Transinhibition and the determination of H+/Cl binding order from a reaction kinetic model.J. Membrane Biol. 58:139–153

    Google Scholar 

  • Sanders, D., Hansen, U.P., Gradmann, D., Slayman, C.L. 1984. Generalized kinetic analysis of ion-driven cotransport systems: A unified interpretation of selective ionic effects on Michaelis parameters.J. Membrane Biol. 77:123–174

    Google Scholar 

  • Schroeder, J.I., Hedrich, R., Fernandez, J.M. 1984. Potassium selective single channels in guard cell protoplasts ofVicia faba.Nature 312:361–362

    Google Scholar 

  • Smith, J.R. 1986. Potassium transport across the membranes ofChara: II.42K fluxes and the electrical current as a function of membrane voltage.J. Exp. Bot. (in press)

  • Smith, J.R., Smith, F.A., Walker, N.A. 1986. Potassium transport across the membranes ofChara: I. The relationships between radioactive tracer influx and electrical conductance.J. Exp. Bot. (in press)

  • Sokolik, A.I., Yurin, V.M. 1981. Transport properties of potassium channels of the plasmalemma inNitella cells at rest.Soviet Plant Physiol. 28:206–212

    Google Scholar 

  • Sokolik, A.I., Yurin, V.M. 1986. Potassium channels in plasmalemma ofNitella cells at rest.J. Membrane Biol. 89:9–22

    Google Scholar 

  • Takeuchi, Y., Kishimoto, U., Ohkawa, T., Kami-Ike, N. 1985. A kinetic analysis of the electrogenic pump ofChara corallina: II. Dependence of the pump activity on external pH.J. Membrane Biol. 86:17–26

    Google Scholar 

  • Tittor, J., Hansen, U.P., Gradmann, D. 1983. Impedance of the electrogenic Cl pump inAcetabularia: Electrical frequency entrainments, voltage-sensitivity, and reaction kinetic interpretation.J. Membrane Biol. 75:129–139

    Google Scholar 

  • Tyerman, S.D., Findlay, G.P., Paterson, G.J. 1986a. Inward membrane current inChara inflata: I. A voltage- and timedependent Cl component.J. Membrane Biol. 89:139–152

    Google Scholar 

  • Tyerman, S.D., Findlay, G.P., Paterson, G.J. 1986b. Inward membrane current inChara inflata: II. Effects of pH, Cl, channel-blockers and NH 4+ , and significance for the hyperpolarized state.J. Membrane Biol. 89:153–161

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fisahn, J., Hansen, UP. & Gradmann, D. Determination of charge, stoichiometry and reaction constants fromI–V curve studies on a K+ transporter inNitella . J. Membrain Biol. 94, 245–252 (1986). https://doi.org/10.1007/BF01869720

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869720

Key Words

Navigation