Skip to main content
Log in

Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril

  • Angiotensin Converting Enzyme Inhibition and the Cardiovascular System
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Summary

We investigated the influence of the angiotensin-converting enzyme (ACE) inhibitor ramipril on cardiac arrhythmias in guinea pigs and rats. Ramiprilat, the active moiety of ramipril, did not influence action potentials of isolated guinea-pig papillary muscle or rabbit sinus node, thereby excluding cellular electrophysiological evidence of anti-arrhythmic properties. Ramipril protected against cardiac arrhythmias induced by digoxin infusion in guinea pigs. This effect was comparable with that of lidocaine. In isolated perfused ischemic working rat hearts, angiotensin (ANG) I (3×10−9 M/l) and ANG II (1×10−9 M/l) aggravated reperfusion arrhythmias, accompanied by deterioration of cardiodynamic and metabolic events. Bradykinin (BK) (1×10−10−1×10−8 M/l), in contrast, protected against reperfusion arrhythmias, which corresponded to an increase in energy-rich phosphates and glycogen stores and a decrease in lactate levels in myocardial tissue. Identical changes were seen in hearts from rats pretreated with ramipril (1 mg/kg PO) or perfused with ramiprilat (2.58 ×10−7−2.58×10−5 M/l). Local ACE inhibition in these ischemic hearts antagonized ANG I but not ANG II effects and enhanced BK effects. The BK antagonist D-Arg-(Hyp2, Thi5,8, D-Phe7) BK abolished the beneficial effects of BK, ramipril, and ramiprilat. Increased concentrations of BK or ramiprilat were able to reverse the antagonism.

The antiarrhythmic agent nicainoprol, a fast-sodiumchannel blocking drug (class Ib), also protected isolated rat hearts against reperfusion arrhythmias, but was without beneficial effects on cardiac hemodynamics and biochemical parameters, in contrast to the ACE inhibitor.

These results suggest that the beneficial effects of the ACE inhibitor ramipril on digoxin and reperfusion arrhythmias are not mediated by their direct actions on ionic channels in the cell membrane. It seems that other factors are responsible for its beneficial effects on reperfusion arrhythmias, cardiac function, and metabolism, which are associated with a reduction in ANG II generation and BK degradation by local ACE inhibition in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Manning AS, Hearse DJ. Reperfusion-induced arrhythmias: Mechanisms and prevention.J Mol Cell Cardiol 1984; 16:497–518.

    PubMed  Google Scholar 

  2. Cleland JGF, Dargie HJ, Hodsman GP, et al. Captopril in heart failure. A double blind controlled trial.Br Heart J 1984; 52:530–535.

    PubMed  Google Scholar 

  3. Webster MWJ, Fitzpatrick MA, Nicholls MG, et al. Effect of enalapril on ventricular arrhythmias in congestive heart failure.Am J Cardiol 1985; 56:566–569.

    PubMed  Google Scholar 

  4. Linz W, Schölkens BA, Han YF. Beneficial effects of the converting enzyme inhibitor ramipril, in ischemic rat hearts.J Cardiovasc Pharmacol 1986; 8 (Suppl 10):S91-S99.

    Google Scholar 

  5. Gilst WH van, Graeff PA de, Kingma JH, et al. Captopril reduces purine loss and reperfusion arrhythmias in the rat heart after coronary artery occlusion.Eur J Pharmacol 1984; 100:113–117.

    PubMed  Google Scholar 

  6. Rochette L, Ribuot C, Belichard P, et al. Protective effect of angiotensin converting enzyme inhibitors (CEJ): Captopril and perindopril on vulnerability to ventricular fibrillation during myocardial ischemia and reperfusion in rat.Clin Exp Theory and Practice 1987; A9 (2 & 3):365–368.

    Google Scholar 

  7. Li K, Chen X. Protective effects of captopril and enalapril on myocardial ischemia and reperfusion damage of rat.J Mol Cell Cardiol 1987; 19:909–915.

    PubMed  Google Scholar 

  8. Lindpaintner K, Wilhelm MJ, Jin M, et al. Tissue reninangintensin systems: Focus on the heart.J Hypertens 1987; 5 (Suppl 2):S33-S38.

    Google Scholar 

  9. Hoffmann BF, Cranefield P.Electrophysiology of the Heart. New York: McGraw-Hill, 1960:1–291.

    Google Scholar 

  10. Bleeker WK, Mackaay AJC, Masson-Pévet M, et al. Functional and morphological organization of the rabbit sinus node.Circ Res 1980; 46:11–22.

    PubMed  Google Scholar 

  11. Vavrek RJ, Stewart JM. Competitive antagonists of bradykinin.Peptides 1985; 6:161–164.

    Google Scholar 

  12. Coker SJ, McGrath MT. Can captopril modify experimentally induced cardiac arrhythmias?J Mol Cell Cardiol 1985; 17 (Suppl 3):41.

    PubMed  Google Scholar 

  13. Aronson RS, Cranefield PF. The effect of resting potential on the electrical activity of canine cardiac purkinje fibers exposed to Na+-free solution or to Quabain.Pflügers Arch 1974; 347:101–116.

    Google Scholar 

  14. Lederer WJ, Tsien RW. Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibers.J Physiol 1976; 263:73–100.

    PubMed  Google Scholar 

  15. Garan H, McGovern BA, Canzanello VJ, et al. The effect of potassium ion depletion on postinfarction canine cardiac arrhythmias.Circulation 1988; 77:696–704.

    PubMed  Google Scholar 

  16. Linz W, Schölkens BA, Jin M, et al. The heart as a target for converting enzyme inhibitors: Studies in ischemic isolated working rat hearts.J Hypertens 1986; 4 Suppl 6): S477-S479.

    Google Scholar 

  17. Linz W, Schölkens BA. Influence of local converting enzyme inhibition on angiotensin and bradykinin effects in ischemic rat hearts.J Cardiovasc Pharmacol 1987; 10 (Suppl 7):S75-S82.

    Google Scholar 

  18. Schölkens BA, Linz W, Lindpaintner K, Ganten D. Angiotensin deteriorates but bradykinin improves cardiac function following ischemia in isolated rat hearts.J Hypertens 1987; 5 (Suppl 5):S7-S9.

    Google Scholar 

  19. Heeg E, Meng K. Die Wirkung des Bradykinins, Angiotensins und Vasopressins auf Vorhof, Papillarmuskel und isoliert durchströmte Herzpräparate des Meerschweinchens.Naunyn-Schmiedeberg's Arch Pharmacol 1965; 250:35–41.

    Google Scholar 

  20. Xiang J, Linz W, Becker H, et al. Effects of converting enzyme inhibitors: Ramipril and enalapril on peptide action and sympathetic neurotransmission in the isolated heart.Eur J Pharmacol 1985; 113:215–223.

    PubMed  Google Scholar 

  21. Opie LH. Effects of anoxia and regional ischemia on metabolism of glucose and fatty acids.Circ Res 1976; 38 (Suppl 1):1–52.

    PubMed  Google Scholar 

  22. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle.Ann Rev Physiol 1974; 36:413–459.

    Google Scholar 

  23. Clough DP, Collis MG, Conway J, et al. Interaction of angiotensin converting enzyme inhibitors with the function of the sympathetic nervous system.Am J Cardiol 1982; 49:1410–1414.

    PubMed  Google Scholar 

  24. Rochette L, Didier JP, Moreau D, Bralet J. Effects of substrate on release of myocardial norepinephrine and ventricular arrhythmias following reperfusion of the ischemic isolated working rat heart.J Cardiovasc Pharmacol 1980; 2:267–279.

    PubMed  Google Scholar 

  25. van Gilst WH, de Graeff PA, Wesseling H, de Langen CDJ. Reduction of reperfusion arrhythmias in the ischemic isolated rat heart by angiotensin converting enzyme inhibitors. A comparison of captopril, enalapril and Hoe 498.J Cardiovasc Pharmacol 1986; 8:722–728.

    PubMed  Google Scholar 

  26. Shahab L, Wollenberger A, Haase M, Schiller U. Noradrenalinabgabe aus dem Hundeherzen nach vorübergehender Okklusion einer Koronararterie.Acta Biol Med Ger 1969; 22:135–143.

    PubMed  Google Scholar 

  27. Manning AS. Reperfusion-induced arrhythmias: Do free radicals play a critical role?Free Rad Biol Med 1988; 4:305–316.

    PubMed  Google Scholar 

  28. Albus U, Kujath W. Effect of angiotensin-converting enzyme inhibitor ramipril on noradrenaline-overflow from isolated working rat hearts subjected to myocardial ischemia and reperfusion (abstract).Naunyn Schmiedeberg's Arch Pharmacol 1987; 335 (Suppl):R82.

    Google Scholar 

  29. Carlsson L, Abrahamsson T. Ramiprilat attenuates local ischemia-induced release of noradrenaline in the ischemic myocardium.Eur J Pharmacol 1989; 166:157–164.

    PubMed  Google Scholar 

  30. Parrat JR, Coker SJ, Wainwright CL. Eicosanoids and susceptibility to ventricular arrhythmias during myocardial ischemia and reperfusion.J Mol Cell Cardiol 1987; 19 (Suppl V):55–66.

    PubMed  Google Scholar 

  31. Trevethick MA, Brown AK, Wright G, Strong P. Effect of A 23 1987 and ischemia-reperfusion on leukotriene release from isolated perfused heart (abstract).Br J Pharmacol 1987; 92: 526 P.

    Google Scholar 

  32. Bernier M, Hearse DJ, Manning AS. Reperfusion-induced arrhythmias and oxygen-derived free radicals. Studies with “anti-free radical” interventions and a free radicalgenerating system in the isolated perfused rat heart.Circ Res 1986; 58:331–340.

    PubMed  Google Scholar 

  33. Rösen P, Eckel J, Reinauer H. Influence of bradykinin on glucose uptake and metabolism studied in isolated cardiac myocytes and isolated perfused rat hearts.Hoppe-Seyler's Z Physiol Chem 1983; 364:431–438.

    Google Scholar 

  34. Miki M, Ogawa K, Hirata M, et al. Prostacyclin release from the coronary vascular wall by vasoactive substances.Thrombosis Res 1984; 35:665–679.

    Google Scholar 

  35. van Gilst WH, van Wijngaarden J, Scholtens E, et al. Captopril-induced increase in coronary flow: An SH-dependent effect on arachidonic acid metabolism?J Cardiovasc Pharmacol 1987; 9 (Suppl 2):S31-S36.

    PubMed  Google Scholar 

  36. Scherf H, Pietsch R, Landsberg G, et al. Converting enzyme inhibitor ramipril stimulated prostacyclin synthesis by isolated rat aorta: Evidence for a kinin-dependent mechanism.Klin Wochenschr 1986; 64:742–745.

    PubMed  Google Scholar 

  37. Palmer RMJ, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.Nature 1987; 327:524–526.

    PubMed  Google Scholar 

  38. Busse R, Luckhoff A, Bassenge E. Endothelium-derived relaxant factor inhibits platelet activation.Naunyn-Schmiedeberg's Arch Pharmacol 1987; 336:566–571.

    Google Scholar 

  39. Reiser G, Hamprecht B. Bradykinin causes a transient rise of intracellular Ca2+-activity in cultured-neural cells.Pflügers Arch 1985; 405:260–264.

    Google Scholar 

  40. Vuorinen P, Laustiola K, Metsä-Ketelä T. The effects of cyclic AMP and cyclic GMP on redox state and energy state in hypoxic rat atria.Life Sci 1984; 35:155–161.

    PubMed  Google Scholar 

  41. Martorana PA, Linz W, Göbel H, et al. Effects of nicainopril on reperfusion arrhythmia in the isolated working rat heart and on ischemia and reperfusion arrhythmia and myocardial infaret size in the anesthetized rat.Eur J Pharmacol 1987; 143:391–401.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linz, W., Schölkens, B.A., Kaiser, J. et al. Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril. Cardiovasc Drug Ther 3, 873–882 (1989). https://doi.org/10.1007/BF01869575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869575

Key words

Navigation