Skip to main content
Log in

Ionic selectivity, saturation and block in gramicidin A channels:

I. Theory for the electrical properties of ion selective channels having two pairs of binding sites and multiple conductance states

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A model for the gramicidin A channel is proposed which extends existing models by adding a specific cationic binding site at each entrance to the channel. The binding of ions to these outer channel sites is assumed to shift the energy levels of the inner sites and barriers and thereby alter the channel conductance. The resulting properties are analyzed theoretically for the simplest case of two inner sites and a single energy barrier. This four-site model (two outer and two inner) predicts that the membrane potential at zero current (U 0) should be described by a Goldman-Hodgkin-Katz equation with concentration-dependent permeability ratios. The coefficients of the concentration-dependent terms are shown to be related to the peak energy shifts of the barrier and to the binding constants of the outer sites. The theory also predicts the channel conductance in symmetrical solutions to exhibit three limiting behaviors, from which the properties of the outer and inner sites can be characterized. In two-cation symmetrical mixtures the conductance as a function of mole fraction is shown to have a minimum, and the related phenomenon of inhibition and block exerted by one ion on the other is explained explicitly by the theory. These various phenomena, having ion interactions in a multiply occupied channel as a common physical basis, are all related (by the theory) through a set of measurable parameters describing the properties of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, O. S. 1975. Ion-specificity of gramicidin channels.Int. Biophys. Congress, Copenhagen. p. 369

  • Begenisich, T., Cahalan, M. 1975. Internal K+ alters sodium channel selectivity.Int. Biophys. Congress, Copenhagen. p. 133 (Abstr.)

  • Bezanilla, F., Armstrong, C. M. 1972. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons.J. Gen. Physiol. 60:588

    Article  PubMed  CAS  Google Scholar 

  • Cahalan, M., Begenisich, T. 1976. Sodium channel selectivity: Dependence on internal permeant ion concentration.J. Gen. Physiol. 68:111

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, G. 1961. On the elementary atomic origin of equilibrium ionic specificity.In:Symposium on Membrane Transport and Metabolism. A. Kleinzeller and A. Kotyk, editors. p. 163. Academic Press, New York

    Google Scholar 

  • Eisenman, G. 1962. Cation selective glass electrodes and their mode of operation.Biophys. J. 2 (2):259

    Article  PubMed  CAS  Google Scholar 

  • Eisenman, G., Krasne, S., Ciani, S. 1974. Further studies on ion selectivity. Proceedings of International Workshop on Ion-Selective Electrodes and on Enzyme Electrodes in Biology and in Medicine, M. Kessler, L. Clark, D. Lübbers, I. Silver and W. Simon, editors. Urban and Schwarzenberg, Münich, Berlin, Vienna (in press)

    Google Scholar 

  • Eisenman, G., Sandblom, J., Neher, E. 1976a. Evidence for multiple occupancy of gramicidin A channels by ions.Biophys. Soc. Annu Meet. Abstr. p. 81a

  • Eisenman, G., Sandblom, J., Neher, E. 1976b. Ionic selectivity, saturation, binding and block in the gramicidin A channel: A preliminary report.9th Jerusalem Symp. on Metal-Ligand Interactions in Organic and Biochemistry. B. Pullman and N. Goldblum, editors. D. Reidel, Dordrecht (in press)

    Google Scholar 

  • Eyring, H., Lumry, R., Woodbury, J. W. 1949. Some applications of modern rate theory to physiological systems.Rec. Chem. Prog.,10:100

    CAS  Google Scholar 

  • Heckman, K. 1972. Passive Permeability of Cell Membranes, Biomembranes, F. Kreuzer and J. F. G. Slegers, editors. Vol. 3, p. 127. Plenum press, New York

    Chapter  Google Scholar 

  • Heckman, K., Lindemann, B., Schnakenberg, J. S. 1972. Current-voltage curves of porous membranes in the presence of pore-blocking ions. I. Narrow pores containing no more than one moving ion.Biophys. J. 12:683

    Article  Google Scholar 

  • Heckman, K., Vollmerhaus, Z. 1970. Zur Theorie der “Single File”-Diffusion. IV. Vergleich von Leerstellendiffusion und “knock-on”-Mechanismus.Phys. Chem. (NF) 71:320

    Google Scholar 

  • Hille, B. 1975a. Ionic selectivity of Na and K channels of nerve membranes.In: Membranes—A Series of Advances, Vol. 3, Ch. 4. Dynamic Properties of Lipid Bilayers and Biological Membranes, G. Eisenman, editor. Marcel Dekker, New York

    Google Scholar 

  • Hille, B. 1975b. Ionic selectivity, saturation, and block in sodium channels.J. Gen. Physiol. 66:535

    Article  PubMed  CAS  Google Scholar 

  • Hladky, S. B. 1972. The Two-Site Lattice Model for the Pore. Ph.D. Dissertation, Cambridge University, England

    Google Scholar 

  • Hladky, S. B. 1974. Pore or carrier? Gramicidin A as a simple pore.In: Drugs and Transport Processes. B. A. Callingham, Editor. p. 193. University Park Press, Baltimore, London, Tokyo

    Google Scholar 

  • Hladky, S. B., Harris, I. D. 1967. An ion displacement membrane model.Biophys. J. 7:535

    Article  PubMed  CAS  Google Scholar 

  • Hladky, S. B., Haydon, D. A. 1970. Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics.Nature (London) 225:451

    Article  CAS  Google Scholar 

  • Hladky, S. B., Haydon, D. A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. I. Studies of the unit conductance channel.Biochim. Biophys. Acta. 274:294

    Article  PubMed  CAS  Google Scholar 

  • Läuger, P. 1973. Ion transport through pores: A rate-theory analysis,Biochim. Biophys. Acta. 311:423

    Article  PubMed  Google Scholar 

  • Myers, V. B., Haydon, D. A. 1972. Ion transfer across lipid membranes in the presence of gramicidin A. II. The ion selectivity.Biochim. Biophys. Acta. 274:313

    Article  PubMed  CAS  Google Scholar 

  • Neher, E. 1975. Ionic specificity of the gramacidin channel and the thallous ion.Biochim. Biophys. Acta. 401:540

    Article  CAS  Google Scholar 

  • Urry, D. W. 1972a. Protein conformation in biomembranes: Optical rotation and adsorption of membrane suspensions.Biochim. Biophys. Acta. 265:115

    Article  PubMed  CAS  Google Scholar 

  • Urry, D. W. 1972b. The gramicidin A transmembrane channel: A proposedπ (L,D) helix.Proc. Nat. Acad. Sci. USA 68:672

    Article  Google Scholar 

  • Urry, D. W., Goodall, M. C., Glickson, I. D., Mayers, D. C. 1971. The gramicidin A transmembrane channel: Characteristics of head-to-head dimerizedπ (L,D) helices,Proc. Nat. Acad. Sci. USA 68:1907

    Article  PubMed  CAS  Google Scholar 

  • Veatch, W. R., Fossel, E. T., Blout, E. R. 1974. The conformation of gramicidin A.Biochemistry 13:5249

    Article  PubMed  CAS  Google Scholar 

  • Woodbury, J. W. 1971. Eyring rate theory model of the current-voltage relationship of ion channels in excitable membranes.In: Chemical Dynamics: Papers in Honor of Henry Eyring. J. Hirschfelder, editor. John Wiley and Sons, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandblom, J., Eisenman, G. & Neher, E. Ionic selectivity, saturation and block in gramicidin A channels:. J. Membrain Biol. 31, 383–417 (1977). https://doi.org/10.1007/BF01869414

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869414

Keywords

Navigation