Skip to main content
Log in

Thermodynamic analysis of active sodium transport and oxidative metabolism in toad urinary bladder

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Measurements of electrical current and oxygen consumption were carried out concurrently under voltage clamp conditions in 11 toad hemibladders. Inhibition of active transport with amiloride then permitted evaluation of the passive conductance and the rate of basal oxygen consumptionJ br , allowing the simultaneous determination of the rates of active sodium transportJ aNa and suprabasal, oxygen consumptionJ sbr .J aNa andJ sbr were linear functions of the electrical potential difference over a range of ±80 mV. This allowed the comprehensive application of a linear nonequilibrium thermodynamic formalism, leading to the evaluation of the affinityA (negative free energy) of the metabolic reaction driving transport, all phenomenological coefficients, and the degree of couplingq relating transport to metabolism. Values ofA determined by two techniques wereA 1=56.0±5.8 andA 2=58.2±6.5 kcal per mole. Values ofq determined by two techniques agreed well and were less than 1, indicating incompleteness of coupling, and hence lack of fixed stoichiometry between Na transport and O2 consumption. The affinity and the electromotive force of sodium transportE Na are not closely correlated, reflecting the fact thatE Na comprises both kinetic and energetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

affinity of metabolic reaction (kcal· mole−1)

E Na :

electromotive force of sodium transport (mV) (=(Δψ) aJNa=0 )

F :

Faraday's constant (kcal·mV−1·Equiv−1)

I :

electrical current (μA·cm−2)

J aNa :

rate of active sodium transport (pmoles·cm−2·S−1)

J r :

rate of oxygen consumption (pmoles·cm−2·s−1)

J sbr :

rate of suprabasal oxygen consumption (pmoles·cm−2·s−1)

J br :

rate of basal oxygen consumption (pmoles·cm−2·s−1)

\(\left. \begin{array}{l} L_{Na} \\ L_{Na,r} \\ L_r \\ \end{array} \right\}\) :

phenomenological coefficients (μmoles2·cm−2·s−1·kcal−1)

q :

degree of couplingL Na,r/(L Na L r)1/2 relating active transport and metabolism

κ:

total conductance (mmho·cm−2)

K a :

active conductance (mmho·cm−2)

K p :

passive conductance (mmho·cm−2)

Δψ:

potential difference (ψ serosal-ψ mucosal) (mV) The subscript zero indicates measurements made at ΔΨ=0

References

  1. Bentley, P. J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol (London) 195:375

    Google Scholar 

  2. Canessa, M., Labarca, P., Leaf, A. 1976. Metabolic evidence that serosal sodium does not recycle through the active transepithelial pathway of toad bladder.J. Membrane Biol. 30:65

    Article  CAS  Google Scholar 

  3. Danisi, G., Vieira, F. L. 1974. Nonequilibrium thermodynamic analysis of the coupling between active sodium transport and oxygen consumption.J. Gen. Physiol. 64:372

    Article  PubMed  CAS  Google Scholar 

  4. Essig, A., Caplan, S. R. 1968. Energetics of active sodium transport.Biophys. J. 8:1434

    Article  PubMed  CAS  Google Scholar 

  5. Hong, C.D., Essig, A. 1976. Effects of 2-deoxy-d-glucose, amiloride, vasopressin, and ouabain on active conductance andE Na in the toad bladder.J. Membrane Biol. 28:121

    Article  CAS  Google Scholar 

  6. Kedem, O., Caplan, S. R. 1965. Degree of coupling and its relationship to efficiency of energy conversion.Trans. Faraday Soc. 61:1897

    Article  CAS  Google Scholar 

  7. Lahav, J., Essig, A., Caplan, S. R. 1976. The thermodynamic degree of coupling between metabolism and sodium transport in frog skin.Biochim. Biophys. Acta 448:389

    Article  PubMed  CAS  Google Scholar 

  8. Lang, M. A., Caplan, S. R., Essig, A. 1976. Sodium transport and oxygen consumption in toad bladder—A thermodynamic approach.Biochim. Biophys. Acta (in press)

  9. Leaf, A., Anderson, J., Page, L. B. 1958. Active sodium transport by the isolated toad bladder.J. Gen. Physiol. 41:657

    Article  PubMed  CAS  Google Scholar 

  10. Leaf, A., Dempsey, E. 1960. Some effects of mammalian neurohypophyseal hormones on metabolism and active sodium transport by the isolated toad bladder.J. Biol. Chem. 235:2160

    PubMed  CAS  Google Scholar 

  11. Mendoza, S. A., Handler, J. S., Orloff, J 1970. Effect of inhibitors of sodium transport on response of toad bladder to ADH and cyclic AMP.Am. J. Physiol. 219:1440

    PubMed  CAS  Google Scholar 

  12. Owen, A., Caplan, S. R., Essig, A. 1975. A comparison of the effects of ouabain and 2-deoxy-d-glucose on the thermodynamic variables of the frog skin.Biochim. Biophys. Acta 394:438

    Article  PubMed  CAS  Google Scholar 

  13. Rottenberg, H., Caplan, S. R., Essig, A. 1967. Stoichiometry and coupling: Theories of oxidative phosphorylation.Nature (London) 216:610

    Article  CAS  Google Scholar 

  14. Saito, T., Essig, A. 1973. Effect of aldosterone on active and passive conductance andE Na in the toad bladder.J. Membrane Biol. 13:1

    Article  CAS  Google Scholar 

  15. Saito, T., Lief, P. D., Essig, A. 1974. Conductance of active and passive pathways in the toad bladder.Am. J. Physiol. 226:1265

    PubMed  CAS  Google Scholar 

  16. Snedecor, G. W., Cochran, W. G. 1967. Statistical Methods. Iowa State University Press, Ames

    Google Scholar 

  17. Ussing, H. H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited frog skin.Acta Physiol. Scand. 23:110

    Article  PubMed  CAS  Google Scholar 

  18. Vieira, F. L., Caplan, S. R., Essig, A. 1972. Energetics of sodium transport in frog skin. I. Oxygen consumption in the short-circuited state.J. Gen. Physiol. 59:60

    Article  PubMed  CAS  Google Scholar 

  19. Vieira, F. L., Caplan, S. R., Essig, A. 1972. Energetics of sodium transport in frog skin. II. The effects of electrical potential on oxygen consumption.J. Gen. Physiol. 59:77

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lang, M.A., Caplan, S.R. & Essig, A. Thermodynamic analysis of active sodium transport and oxidative metabolism in toad urinary bladder. J. Membrain Biol. 31, 19–29 (1977). https://doi.org/10.1007/BF01869397

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869397

Keywords

Navigation