Skip to main content
Log in

Van der waals interactions between cell surfaces

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Van der Waals energies of interaction between model cell surfaces are calculated for various distances of separation, layer thicknesses and compositions of cell surfaces and intercellular media. In these calculations the cell peripheries are considered to consist of two layers: (1) A phospholipid-cholesterol-protein plasma membrane and (2) a surface coat, which consists of protein, sugar and water. The required Van der Waals parameters of sugars, phospholipids and cholesterol are derived from refractive indices of their solutions in the visible and ultraviolet regions. Polarizabilities and Van der Waals parameters of these substances are determined and shown to be almost independent of concentration of solutions. Resulting isotropic polarizabilities differ by less than five percent from values obtained by the addition of bond polarizabilities.

The magnitude of Van der Waals interactions between cell surfaces has been found to vary with composition according to the following sequence: water<phospholipid<cholesterol, protein<sugar. A decrease in the concentration of a given substance in the cell surface at the expense of a corresponding increase in the concentration of a substance preceding it in this sequence lowers the magnitude of attractive interactions, whereas a similar change in the extracellular medium would have an opposite effect.

A consideration of experimentally found variations in composition of cell surfaces results in calculated values of Hamaker's coefficients between 8×10−15 ergs and 6×10−14 ergs at 50 Å distance of separation, which corresponds to free energies per unit area of 210-1600kT/μ 2

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrose, E.J., Easty, D.M. 1970. Cell Biology. Addison-Wesley Publishing, Reading, Massachusetts

    Google Scholar 

  • Andersen, M., Painter, L.R., Nir, S. 1974. Dispersion equation and polarizability of bovine serum albumin from measurements of refractive indices.Biopolymers 13:1261

    Article  CAS  Google Scholar 

  • Ballard, P.L., Tomkins, G.M. 1970. Glucocorticoid-induced alteration of the surface membrane of cultured hepatoma cells.J. Cell Biol. 47:222

    Article  PubMed  CAS  Google Scholar 

  • Cereijido, M., Rotunno, C. 1970. Introduction to the Study of Biological Membranes. p. 46. Gordon and Breach, New York

    Google Scholar 

  • Curtis, A.S.G. 1967. The Cell Surface: Its Molecular Role in Morphogenesis. Academic Press, London

    Google Scholar 

  • Curtis, A.S.G. 1973. Cell adhesion.In: Progress in Biophysics and Molecular Biology. J.A.V. Butler and D. Noble, editors. Vol. 27, p. 315. Pergamon Press, Oxford

    Google Scholar 

  • Denbigh, K.G. 1940. The polarizability of bonds.Trans. Faraday Soc. 36:936

    Article  CAS  Google Scholar 

  • Dowben, R.M. 1971. Cell Biology. Harper and Row, New York

    Google Scholar 

  • Dzyaloshinskii, I.E., Lifshitz, E.M., Pitaevskii, L.P. 1961. The general theory of Van der Waals forces.Adv. Phys. 10:165

    Article  Google Scholar 

  • Fettiplace, R., Andrews, D.M., Haydon, D.A. 1971. The thickness, composition and structure of Some Lipid Bilayers and Natural Membranes.J. Membrane Biol. 5:277

    Article  CAS  Google Scholar 

  • Good, R.J. 1972. Theory of the adhesion of cells and the spontaneous sorting-out of mixed cell aggregates.J. Theor. Biol. 37:413

    Article  PubMed  CAS  Google Scholar 

  • Gregory, J. 1969. The calculation of hamaker constants.Adv. Colloid Interface Sci. 2:396

    Article  Google Scholar 

  • Hamaker, H.C. 1937. The London-Van der Waals attraction between spherical particles.Physica 4:1058

    Article  CAS  Google Scholar 

  • Hanai, T., Haydon, D.A., Taylor, J. 1964. An investigation by electrical methods of lecithinin-hydrocarbon films in aqueous solutions.Proc. R. Soc. London. A 281:377

    Article  CAS  Google Scholar 

  • Hughes, R.C. 1973. Glycoproteins as components of cellular membranes.In: Progress in Biophysics and Molecular Biology. Vol. 26. J.A.V. Butler and D. Noble, editors. Pergamon Press, New York

    Google Scholar 

  • Ingram, B.T. 1974. Wetting of silica byn-Alkanes.J. Chem. Soc. Faraday Trans. 1 70:868

    Article  CAS  Google Scholar 

  • Jehle, H. 1969. Charge fluctuation forces in biological systems.Ann. N. Y. Acad. Sci. 158:240

    Article  CAS  Google Scholar 

  • Kabat, E.A. 1956. Blood Group Substances. Academic Press. New York

    Google Scholar 

  • Krivacic, J.R., Urry, D.W. 1971. Ultraviolet and visible refractive indices of spectroquality solvents. II. Aqueous solutions of polyhydroxy solutes.Anal. Biochem. 43:240

    Article  PubMed  CAS  Google Scholar 

  • Langbein, D. 1970. Reduced dispersion energy between macroscopic bodies.Phys. Rev. B2:3371

    Article  Google Scholar 

  • LeFevre, R.J.W. 1965. Molecular refractivity and polarizability.In: Advances in Physical Organic Chemistry. Vol. 3. V. Gold, editor. Academic Press, New York

    Google Scholar 

  • Lifshitz, E.M. 1955. The theory of molecular attractive forces between solids.J. Exp. Theor. Phys. 29:94

    Google Scholar 

  • London, F. 1937. The general theory of molecular forces.Trans. Faraday Soc. 33:8

    Article  CAS  Google Scholar 

  • Ninham, B.W., Parsegian, V.A., Weiss, G.H. 1970. On the macroscopic theory of temperature-dependent Van der Waals forces.J. Stat. Phys. 2:323

    Article  Google Scholar 

  • Nir, S. 1973. Dielectric constants of liquid water and other associated liquids: Calculations with Onsager Theory. Application of the Onsager Theory to solutions.Biophys. Soc. 13:208 A (Abstr.)

    Google Scholar 

  • Nir, S. 1974. Reduction of macroscopically derived dispersion forces to two-body interactions.J. Chem. Phys. 61:2316

    Article  CAS  Google Scholar 

  • Nir, S. 1975. Long range intermolecular forces between macroscopic bodies: Macroscopic and microscopic approaches.J. Theor. Biol. 53:83

    Article  PubMed  CAS  Google Scholar 

  • Nir, S. 1976. Van der Waals interactions between surfaces of biological interest.Prog. Surf. Sci. (in press)

  • Nir, S., Adams, S., Rein, R. 1973. Polarizability calculations on water, hydrogen, oxygen and carbon dioxide.J. Chem. Phys. 59:3341

    Article  CAS  Google Scholar 

  • Nir, S., Adams, S., Rein, R. 1974. Determination of dielectric dispersion by two methods and application to calculations of Van der Waals forces.J. Colloid Interface Sci. 49:196

    Article  CAS  Google Scholar 

  • Nir, S., Rein, R., Weiss, L. 1972. On the applicability of certain approximations of the Lifshitz Theory to thin films.J. Theor. Biol. 34:135

    Article  PubMed  CAS  Google Scholar 

  • Ohki, S. 1970. Properties of lipid bilayer membranes.J. Theor. Biol. 26:277

    Article  PubMed  CAS  Google Scholar 

  • Onsager, L. 1936. Electric moments of molecules in liquids.J. Am. Chem. Soc. 58:1486

    Article  CAS  Google Scholar 

  • Painter, L. 1968. Electronic Properties of Liquid Water in the Vacuum Ultraviolet Region. Ph.D. Thesis, University of Tennessee, Knoxville

    Google Scholar 

  • Painter, L., Birkhoff, R., Arakawa, E. 1969. Optical measurements of liquid water in the vacuum ultraviolet.J. Chem. Phys. 51:243

    Article  CAS  Google Scholar 

  • Painter, L., Hamm, R., Arakawa, E., Birkhoff, R. 1968. Electronic properties of liquid water in the vacuum ultraviolet.Phys. Rev. Lett. 21:282

    Article  CAS  Google Scholar 

  • Papahadjopoulos, D., Jacobson, K., Nir, S., Isac, T. 1973. Phase transitions in phospholipid vesicles.Biochim. Biophys. Acta 311:330

    Article  PubMed  CAS  Google Scholar 

  • Papahadjopoulos, D., Miller, N. 1967. Phospholipid model membranes. I. Structural characteristics of hydrated liquid crystals.Biochim. Biophys. Acta 135:624

    Article  PubMed  CAS  Google Scholar 

  • Parsegian, V.A., Gingell, D. 1973. A physical force model of biological membrane interaction.In: Recent Advances in Adhesion, L.H. Lee, editor. p. 153. Pergamon Press, London

    Google Scholar 

  • Parsegian, V.A., Ninham, B.W. 1973. Van der Waals forces in many-layered structures: Generalizations of the Lifshitz result for two semi-infinite media.J. Theor. Biol. 38:101

    Article  PubMed  CAS  Google Scholar 

  • Redwood, W., Takashima, S., Schwan, H., Thomson, T. 1972. Dielectric studies on homogeneous phosphatidylcholine vesicles.Biochim. Biophys. Acta 255:557

    Article  PubMed  CAS  Google Scholar 

  • Schwan, H.P., Takashima, S., Miyamoto, V.K., Stoeckenius, W. 1970. Electrical properties of phospholipid vesicles.Biophys. J. 19:1102

    Article  Google Scholar 

  • Srere, P.A., Milam, M. 1974. Stochastic studies on cell surface stickiness.In: Biology and Chemistry of Eucaryotic Cell Surfaces, Miami Winter Symposia. Vol. 7, p. 21. Academic Press, New York

    Google Scholar 

  • Van Kampen, N.G., Nijboer, B.R.A., Schram, K. 1968. On the macroscopic theory of Van der Waals forces.Phys. Lett. 26A:307

    Google Scholar 

  • Van Silfhout, A. 1966. Dispersion forces between macroscopic objects.Proc. K. Ned. Akad. Wet. B69:501

    Google Scholar 

  • Vincent, B. 1973. The Van der Waals attraction between colloid particles having adsorbed layers. II. Calculation of interaction curves.J. Colloid Interface Sci. 42:270

    Article  CAS  Google Scholar 

  • Vold, M.J. 1961. The effect of adsorption on the Van der Waals interaction of spherical collidal particles.J. Colloid Sci. 16:1

    Article  CAS  Google Scholar 

  • Weast, R. (editor) 1973. Handbook of Chemistry and Physics. Chem. Publ. Co. Press, Cleveland

    Google Scholar 

  • Weiss, L. 1968. Studies on cellular adhesion in tissue culture. X. An experimental and theoretical approach to interaction forces between cells and glass.Exp. Cell Res. 53:603

    Article  Google Scholar 

  • Weiss, L., Nir, S., Harlos, J.P., Subjeck, J.R. 1975. Long distance interactions between Ehrlich ascites tumour cells.J. Theor. Biol. 51:439

    Article  PubMed  CAS  Google Scholar 

  • Wilkins, D.J., Ottewill, R.H., Bangham, A.D. 1962. On the flocculation of sheep leucocytes: II. stability studies.J. Theor. Biol. 2:176

    Article  CAS  Google Scholar 

  • Winzler, R.J. 1971. Carbohydrates in cell surfaces.In: International Review of Cytology. G.H. Bourne and J.F. Danielli, editors. Vol. 29, p. 98. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nir, S., Andersen, M. Van der waals interactions between cell surfaces. J. Membrain Biol. 31, 1–18 (1977). https://doi.org/10.1007/BF01869396

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869396

Keywords

Navigation