Skip to main content
Log in

Phenomenological Model of Hydrophobic and Hydrophilic Interactions

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Hydration forces acting between macroscopic bodies at distances L ≤ 3 nm in pure water are calculated based on the phenomenological model of polar liquids. It is shown that depending on the properties of the bodies, the interacting surfaces polarize the liquid differently, and wetting properties of the surfaces are completely characterized by two parameters. If the surfaces are hydrophilic, liquid molecules are polarized at right angles to the surfaces, and the interaction is the short-range repulsion (the forces of interaction decrease exponentially over the characteristic length λ ≈ 0.2 nm). The interaction between the hydrophobic surfaces is more diversified and has been studied less. For L ≤ 3 nm, the interaction exhibits universal properties, while for L ≤ 3 nm, it considerably depends on the properties of the surfaces and on the distances between them, as well as on the composition of the polar liquid. In full agreement with the available experimental results we find that if the interfaces are mostly hydrophobic, then the interaction is attractive and long-range (the interaction forces diminish exponentially with decay length 1.2 nm). In this case, the resultant polarization of water molecules is parallel to the surface. It is shown that hydration forces are determined by nonlinear effects of polarization of the liquid in the bulk or by analogous nonlinearity of the interaction of water with a submerged body. This means that the forces of interaction cannot be calculated correctly in the linear response approximation. The forces acting between hydrophobic or hydrophilic surfaces are of the entropy type or electrostatic, respectively. It is shown that hydrophobic and hydrophilic surfaces for L ≤ 3 nm repel each other. The calculated intensity of their interaction is in agreement with experimental data. We predict the existence of an intermediate regime in which a body cannot order liquid molecules, which results in a much weaker attraction that decreases in inverse proportion to the squared distance between the surfaces of bodies. The difference between the microscopic structures of liquids confined in nanovolumes from liquids in large volumes is considered. The proposed model is applicable for a quantitative description of the properties of water at temperatures T satisfying the condition 0 < (T–T c )/T c ≪ 1, where T c ≈ 230 K is the temperature of the ferroelectric phase transition observed in supercooled water. Under standard conditions, the model can be used for obtaining qualitative estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. LeNeveu, R. Rand, and V. Parsegian, Nature 259, 601 (1976).

    Article  ADS  Google Scholar 

  2. H. Van Olphen, An Introduction to Clay Colloid Chemistry (Wiley, Chichester, 1977).

    Google Scholar 

  3. R. Pashley, J. Colloid Interf. Sci. 80, 153 (1981).

    Article  ADS  Google Scholar 

  4. R. Pashley, J. Colloid Interf. Sci. 83, 531 (1981).

    Article  ADS  Google Scholar 

  5. Y. I. Rabinovich, B. Derjaguin, and N. Churaev, Adv. Colloid Interf. Sci. 16, 63 (1982).

    Article  Google Scholar 

  6. G. Peschel, P. Belouschek, M. Müller, et al., Colloid Polym. Sci. 260, 444 (1982).

    Article  Google Scholar 

  7. R. Horn, D. Smith, and W. Haller, Chem. Phys. Lett. 162, 404 (1989).

    Article  ADS  Google Scholar 

  8. J. N. Israelachvili, Intermolecular and Surface Forces (Academic, New York, 2011).

    Google Scholar 

  9. S. Marcelja and N. Radic, Chem. Phys. Lett. 42, 129 (1976).

    Article  ADS  Google Scholar 

  10. R. Kjellander and S. Marčelja, J. Chem. Phys. 82, 2122 (1985).

    Article  ADS  Google Scholar 

  11. M. Belaya, M. Feigel’man, and V. Levadny, Chem. Phys. Lett. 126, 361 (1986).

    Article  ADS  Google Scholar 

  12. S. Leikin and A. Kornyshev, J. Chem. Phys. 92, 6890 (1990).

    Article  ADS  Google Scholar 

  13. M. U. Hammer, T. H. Anderson, A. Chaimovich, et al., Faraday Discuss. 146, 299 (2010).

    Article  ADS  Google Scholar 

  14. W. Helfrich and R. Servuss, Nuovo Cim. D 3, 137 (1984).

    Article  ADS  Google Scholar 

  15. W. Helfrich, Z. Naturforsch. A 33, 305 (1978).

    Article  ADS  Google Scholar 

  16. J. Israelachvili and H. Wennerström, Nature (London) 379, 219 (1996).

    Article  ADS  Google Scholar 

  17. F. L. Leite, C. C. Bueno, A. L. da Róz, et al., Int. J. Mol. Sci. 13, 12773 (2012).

    Article  Google Scholar 

  18. V. A. Parsegian and D. Gingell, Biophys. J. 12, 1192 (1972).

    Article  Google Scholar 

  19. J. Israelachvili and R. Pashley, Nature 300, 341 (1982).

    Article  ADS  Google Scholar 

  20. R. M. Pashley, P. M. McGuiggan, B. W. Ninham, et al., Science 229, 1088 (1985).

    Article  ADS  Google Scholar 

  21. P. M. Claesson and H. K. Christenson, J. Phys. Chem. 92, 1650 (1988).

    Article  Google Scholar 

  22. R. Pashley, Chem. Scripta 25, 22 (1985).

    Google Scholar 

  23. P. M. Claesson, C. E. Blom, P. C. Herder, and B. W. Ninham, J. Colloid Interf. Sci. 114, 234 (1986).

    Article  ADS  Google Scholar 

  24. J. L. Parker, D. L. Cho, and P. M. Claesson, J. Phys. Chem. 93, 6121 (1989).

    Article  Google Scholar 

  25. Y. I. Rabinovich and B. Derjaguin, Colloids Surf. 30, 243 (1988).

    Article  Google Scholar 

  26. H. K. Christenson, J. Fang, B. W. Ninham, and J. L. Parker, J. Phys. Chem. 94, 8004 (1990).

    Article  Google Scholar 

  27. P. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003).

    ADS  Google Scholar 

  28. X. Su, L. Lianos, Y. Shen, and G. Somorjai, Phys. Rev. Lett. 80, 1533 (1998).

    Article  ADS  Google Scholar 

  29. M. Iedema, M. Dresser, D. Doering, et al., J. Phys. Chem. B 102, 9203 (1998).

    Article  Google Scholar 

  30. S. Singer, J. Kuo, T. Hirsch, et al., Phys. Rev. Lett. 94, 135701 (2005).

    Article  ADS  Google Scholar 

  31. S. Jähnert, F. Chávez, G. Schaumann, et al., Phys. Chem. Chem. Phys. 10, 6039 (2008).

    Article  Google Scholar 

  32. K. Morishige and K. Kawano, J. Chem. Phys. 110, 4867 (1999).

    Article  ADS  Google Scholar 

  33. S. Jackson and R. Whitworth, J. Phys. Chem. B 101, 6177 (1997).

    Article  Google Scholar 

  34. C. Cramer and D. Truhlar, Chem. Rev. 99, 2161 (1999).

    Article  Google Scholar 

  35. P. Fedichev and L. Menshikov, arXiv:condmat/0601129.

  36. L. I. Men’shikov and P. O. Fedichev, Russ. J. Phys. Chem. A 85, 906 (2011).

    Article  Google Scholar 

  37. L. Menshikov and P. Fedichev, J. Struct. Chem. 50, 97 (2009).

    Article  Google Scholar 

  38. P. Fedichev, L. Menshikov, G. Bordonskiy, and A. Orlov, JETP Lett. 94, 401 (2011).

    Article  ADS  Google Scholar 

  39. G. Bordonskiy, A. Gurulev, A. Orlov, and K. Schegrina, arXiv:1204.6401v1.

  40. P. Fedichev and L. Menshikov, arXiv:0808.0991.

  41. C. Angell, J. Shuppert, and J. Tucker, J. Phys. Chem. 77, 3092 (1973).

    Article  Google Scholar 

  42. I. Hodge and C. Angell, J. Chem. Phys. 68, 1363 (1978).

    Article  ADS  Google Scholar 

  43. P. Debye, Polar Molecules (Chemical Catalog Company, 1929).

    MATH  Google Scholar 

  44. C. Angell, Ann. Rev. Phys. Chem. 34, 593 (1983).

    Article  ADS  Google Scholar 

  45. F. Stillinger, Phil. Trans. R. Soc. London B 278, 97 (1977).

    Article  ADS  Google Scholar 

  46. R. Speedy and C. Angell, J. Chem. Phys. 65, 851 (1976).

    Article  ADS  Google Scholar 

  47. D. Wei and G. Patey, Phys. Rev. Lett. 68, 2043 (1992).

    Article  ADS  Google Scholar 

  48. I. Ponomareva, I. Naumov, I. Kornev, et al., Phys. Rev. B 72, 140102 (2005).

    Article  ADS  Google Scholar 

  49. J. Weis, J. Chem. Phys. 123, 044503 (2005).

    Article  ADS  Google Scholar 

  50. J. Weis, D. Levesque, and G. Zarragoicoechea, Phys. Rev. Lett. 69, 913 (1992).

    Article  ADS  Google Scholar 

  51. B. Groh and S. Dietrich, Phys. Rev. Lett. 72, 2422 (1994).

    Article  ADS  Google Scholar 

  52. V. Ballenegger and J. Hansen, Mol. Phys. 102, 599 (2004).

    Article  ADS  Google Scholar 

  53. D. Matyushov, Phys. Rev. E 76, 11511 (2007).

    Article  ADS  Google Scholar 

  54. J. Bartke and R. Hentschke, Phys. Rev. E 75, 061503 (2007).

    Article  ADS  Google Scholar 

  55. M. A. Pounds and P. A. Madden, J. Chem. Phys. 126, 104506 (2007).

    Article  ADS  Google Scholar 

  56. F. Sciortino, Chem. Phys. 258, 307 (2000).

    Article  ADS  Google Scholar 

  57. J. Bernal and R. Fowler, J. Chem. Phys. 1, 515 (1933).

    Article  ADS  Google Scholar 

  58. J. A. Pople, Proc. R. Soc. London A 205, 163 (1951).

    Article  ADS  Google Scholar 

  59. A. Schreiber, I. Ketelsen, and G. Findenegg, Phys. Chem. Chem. Phys. 3, 1185 (2001).

    Article  Google Scholar 

  60. O. Petrov and I. Furó, Prog. Nucl. Magn. Reson. Spectrosc. 54, 97 (2009).

    Article  Google Scholar 

  61. H. Frohlich, Theory of Dielectrics: Dielectric Constantand Dielectric Loss (Clarendon, Oxford, 1949).

    Google Scholar 

  62. G. S. Bordonskii and A. O. Orlov, Phys. Solid State 56, 1626 (2014).

    Article  ADS  Google Scholar 

  63. T. Takamuku, M. Yamagami, H. Wakita, et al., J. Phys. Chem. B 101, 5730 (1997).

    Article  Google Scholar 

  64. D. Steytler and J. Dore, Mol. Phys. 56, 1001 (1985).

    Article  ADS  Google Scholar 

  65. M. Bellissent-Funel, J. Lal, and L. Bosio, J. Chem. Phys. 98, 4246 (1993).

    Article  ADS  Google Scholar 

  66. N. Giovambattista, P. Rossky, and P. Debenedetti, Phys. Rev. E 73, 041604 (2006).

    Article  ADS  Google Scholar 

  67. A. Y. Vasiliev, A. Tarkhov, L. Menshikov, et al., New J. Phys. 16, 3011 (2014).

    Article  Google Scholar 

  68. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Fizmatlit, Moscow, 2010; Pergamon, Oxford, 1980).

    Google Scholar 

  69. A. Kohlmeyer, C. Hartnig, and E. Spohr, J. Mol. Liq. 78, 233 (1998).

    Article  Google Scholar 

  70. D. LeBard and D. Matyushov, J. Phys. Chem. B 114, 9246 (2010).

    Article  Google Scholar 

  71. H. B. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).

    Google Scholar 

  72. T. H. Boyer, Ann. Phys. 56, 474 (1970).

    Article  ADS  Google Scholar 

  73. J. C. Eriksson, S. Ljunggren, and P. M. Claesson, J. Chem. Soc., Faraday Trans. 2 85, 163 (1989).

    Article  Google Scholar 

  74. P. Frodl and S. Dietrich, Phys. Rev. A 45, 7330 (1992).

    Article  ADS  Google Scholar 

  75. D. Beglov and B. Roux, J. Chem. Phys. 104, 8678 (1996).

    Article  ADS  Google Scholar 

  76. R. Ramirez, R. Gebauer, M. Mareschal, and D. Borgis, Phys. Rev. E 66, 031206 (2002).

    Article  ADS  Google Scholar 

  77. C. Azuara, H. Orland, M. Bon, et al., Biophys. J. 95, 5587 (2008).

    Article  ADS  Google Scholar 

  78. H. Gong and K. Freed, Phys. Rev. Lett. 102, 57603 (2009).

    Article  ADS  Google Scholar 

  79. P. Koehl, H. Orland, and M. Delarue, Phys. Rev. Lett. 102, 87801 (2009).

    Article  ADS  Google Scholar 

  80. D. Chandler, Nature 437, 640 (2005).

    Article  ADS  Google Scholar 

  81. D. Chandler, Phys. Rev. E 48, 2898 (1993).

    Article  ADS  Google Scholar 

  82. T. Zubkov, D. Stahl, T. L. Thompson et al., J. Phys. Chem. B 109, 15454 (2005).

    Article  Google Scholar 

  83. S. R. Morrison, The Chemical Physics of Surfaces (Springer Science, New York, 2013).

    Google Scholar 

  84. G. Caputo, C. Nobile, T. Kipp, et al., J. Phys. Chem. C 112, 701 (2008).

    Article  Google Scholar 

  85. D. J. Mastropietro and W. A. Ducker, Phys. Rev. Lett. 108, 106101 (2012).

    Article  ADS  Google Scholar 

  86. P. O. Fedichev and L. I. Menshikov, JETP Lett. 97, 214 (2013).

    Article  ADS  Google Scholar 

  87. G. Bordonskiy and A. Orlov, arXiv:1303.4873.

  88. M. Mazza, K. Stokely, E. Strekalova, et al., Comput. Phys. Commun. 180, 497 (2009).

    Article  ADS  Google Scholar 

  89. H. Stanley, S. Buldyrev, P. Kumar, et al., J. Non- Cryst. Solids 357, 629 (2011).

    Article  ADS  Google Scholar 

  90. G. Findenegg, S. Jähnert, D. Akcakayiran, and A. Schreiber, Chem. Phys. Chem. 9, 2651 (2008).

    Article  Google Scholar 

  91. R. Mancinelli, F. Bruni, and M. Ricci, J. Mol. Liq. 159, 42 (2011).

    Article  Google Scholar 

  92. M. Ricci, F. Bruni, and A. Giuliani, Faraday Discuss. 141, 347 (2008).

    Article  ADS  Google Scholar 

  93. F. Bruni, M. Ricci, and A. Soper, J. Chem. Phys. 109, 1478 (1998).

    Article  ADS  Google Scholar 

  94. D. Awschalom and J. Warnock, Phys. Rev. B 35, 6779 (1987).

    Article  ADS  Google Scholar 

  95. I. Brovchenko and A. Oleinikova, Chem. Phys. Chem. 9, 2660 (2008).

    Article  Google Scholar 

  96. R. Mancinelli, F. Bruni, and M. Ricci, J. Phys. Chem. Lett. 1, 1277 (2010).

    Article  Google Scholar 

  97. P. Gallo, M. Rovere, and S. Chen, J. Phys. Chem. Lett. 1, 729 (2010).

    Article  Google Scholar 

  98. K. Morishige and K. Nobuoka, J. Chem. Phys. 107, 6965 (1997).

    Article  ADS  Google Scholar 

  99. S. Romero-Vargas Castrillón, N. Giovambattista, I. A. Aksay, and P. G. Debenedetti, J. Phys. Chem. B 113, 7973 (2009).

    Article  Google Scholar 

  100. E. Gonzalez Solveyra, E. de la Llave, D. A. Scherlis, and V. Molinero, J. Phys. Chem. B 115, 14196 (2011).

    Article  Google Scholar 

  101. S. Cerveny, F. Mallamace, J. Swenson, et al., Chem. Rev. 116, 7608 (2016).

    Article  Google Scholar 

  102. C. Faivre, D. Bellet, and G. Dolino, Eur. Phys. J. B 7, 19 (1999).

    Article  ADS  Google Scholar 

  103. W. Hillig, J. Cryst. Growth 183, 463 (1998).

    Article  ADS  Google Scholar 

  104. M. Shimoda, T. Mizusaki, M. Hiroi, et al., J. Low Temp. Phys. 64, 285 (1986).

    Article  ADS  Google Scholar 

  105. A. Eddington, The Nature of the Physical World: Gifford Lectures 1927 (Cambridge Univ. Press, Cambridge, 2012).

    Google Scholar 

  106. M. P. Gelfand and R. Lipowsky, Phys. Rev. B 36, 8725 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  107. E. Sackmann and R. Lipowsky, Structure and Dynamics of Membranes (Elsevier, Amsterdam, 1995).

    MATH  Google Scholar 

  108. A. Faghihnejad and H. Zeng, Langmuir 29, 12443 (2013).

    Article  Google Scholar 

  109. E. Kokkoli and C. F. Zukoski, J. Colloid Interface Sci. 230, 176 (2000).

    Article  ADS  Google Scholar 

  110. A. M. Freitas and M. M. Sharma, J. Colloid Interface Sci. 233, 73 (2001).

    Article  ADS  Google Scholar 

  111. J.-H. Lee and J. C. Meredith, Langmuir 27, 10000 (2011).

    Article  Google Scholar 

  112. C. van Oss and R. Giese, Clays Clay Miner. 43, 474 (1995).

    Article  ADS  Google Scholar 

  113. M. A. Evgrafov, Analytic Functions (Nauka, Moscow, 1991; Dover, New York, 1978).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Menshikov.

Additional information

Original Russian Text © L.I. Menshikov, P.L. Menshikov, P.O. Fedichev, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 6, pp. 1374–1392.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menshikov, L.I., Menshikov, P.L. & Fedichev, P.O. Phenomenological Model of Hydrophobic and Hydrophilic Interactions. J. Exp. Theor. Phys. 125, 1173–1188 (2017). https://doi.org/10.1134/S1063776117120056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117120056

Navigation