Skip to main content
Log in

Effects of adrenal steroids on Na transport in the lower intestine (Coprodeum) of the hen

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The influence of adrenal steroids on sodium transport in hen coprodeum was investigated by electrophysiological methods. Laying hens were maintained on low-NaCl diet (LS), or on high-NaCl diet (HS). HS hens were pretreated with aldosterone (128 μg/kg) or dexamethasone (1 mg/kg) before experiment. A group of LS hens received spironolactone (70 or 160 mg/kg, for three days). The effects of these dietary and hormonal manipulations on the amiloride-sensitive part of the short-circuit current were examined. This part is in excellent agreement with the net Na flux, and therefore a direct electrical measurement for Na transport. After depolarizing the basolateral membrane potential with a high K concentration, the apical Na permeability and the intracellular Na activity were investigated by currentvoltage relations for the different experimental conditions.

Plasma aldosterone concentrations (PA) were low in HS hens, dexamethasone-treated HS hens and spironolactonetreated LS hens (<70pm). In contrast LS hens and aldosteronetreated HS hens had a PA concentration of 596±70 and 583±172pm, respectively. LS diet (chronic stimulation) had the largest stimulatory effect on Na transport and apical Na permeability. Hormone-treated animals had three- to fourfold lower values. Spironolactone supply in LS hens decreased Na transport and apical Na permeability about 50%.

The results provide evidence that both mineralo- and glucocorticoids stimulate Na transport in this tissue by increasing the apical Na permeability. Quantitative differences between acute and chronic stimulation reveal a secondary slower adaptation in apical membrane properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnason, S.S., Rice, G.E., Chadwick, A., Skadhauge, E. 1986. Plasma levels of arginine vasotocin, prolactin, aldosterone and corticosterone during prolonged dehydration in the domestic fowl: Effect of dietary NaCl.J. Comp. Physiol. B 156:383–397

    Google Scholar 

  • Bastl, C., Binder, H.J., Hayslett, J.P. 1980. Role of glucocorticoids and aldosterone in maintenance of colonic cation transport.Am. J. Physiol. 238:F181-F186

    Google Scholar 

  • Binder, H.J. 1978. Effect of dexamethasone on electrolyte transport in the large intestine of the rat.Gastroenterology 75:212–217

    Google Scholar 

  • Bindslev, N. 1979. Sodium transport in the hen lower intestine. Induction of sodium sites in the brush border by a low sodium diet.J. Physiol. (London) 288:449–466

    Google Scholar 

  • Bindslev, N., Cuthbert, A.W., Edwardson, J.M., Skadhauge, E. 1982. Kinetics of amiloride action in the hen coprodeum in vitro.Pfluegers Arch. 392:340–347

    Google Scholar 

  • Charney, A.N., Kinsey, M.D., Myers, L., Gianella, R.A., Gots, R.E. 1975. Na−K-activated adenosine triphosphatase and intestinal electrolyte transport—Effect of adrenal steroids.J. Clin. Invest. 56:653–660

    Google Scholar 

  • Charney, A.N., Wallach, J., Ceccarelli, S., Donowitz, M., Costenblader, C.L. 1981. Effects of spironolactone and amiloride on corticosteroid-induced changes in colonic function.Am. J. Physiol. 241:G300-G305

    Google Scholar 

  • Choshniak, J., Munck, B.G., Skadhauge, E. 1977. Sodium chloride transport across the chicken coprodeum. Basic characteristics and dependence on sodium intake.J. Physiol. (London) 271:489–504

    Google Scholar 

  • Christensen, O., Bindslev, N. 1982. Fluctuation analysis of short-circuit current in a warm-blooded sodium-retaining epithelium: Site current, density, and interaction with triamterene.J. Membrane Biol. 65:19–30

    Google Scholar 

  • Clauss, W. 1984. Circadian rhythms in Na transport.In: Intestinal Absorption and Secretion. E. Skadhauge and K. Heintze, editors. pp. 273–283. MTP Press, Lancaster

    Google Scholar 

  • Clauss, W., Arnason, S.S., Munck, B.G., Skadhauge, E. 1984. Aldosterone-induced sodium transport in lower intestine. Effects of varying NaCl intake.Pfluegers Arch. 401:354–360

    Google Scholar 

  • Clauss, W., Dürr, J., Rechkemmer, G. 1985a. Characterization of conductive pathways in guinea pig distal colon in vitro.Am. J. Physiol. 248:G176-G183

    Google Scholar 

  • Clauss, W., Dürr, J., Skadhauge, E., Hörnicke, H. 1985b. Effects of aldosterone and dexamethasone on apical membrane properties and Na-transport of rabbit distal colon in vitro.Pfluegers Arch. 403:186–192

    Google Scholar 

  • Conn, J.W., Hinerman, D.L. 1977. Spironolactone-induced inhibition of aldosterone biosynthesis in primary aldosteronism: Morphological and functional studies.Metabolism 26:1293–1307

    Google Scholar 

  • Cuthbert, A.W., Edwardson, J.M., Bindslev, N., Skadhauge, E. 1982. Identification of potential components of the transport mechanism for Na in the hen colon and coprodeum.Pfluegers Arch. 392:347–351

    Google Scholar 

  • DeLong, J., Civan, M.M. 1984. Apical sodium entry in split frog skin: Current-voltage relationship.J. Membrane Biol. 82:25–40

    Google Scholar 

  • Dürr, J.E., Clauss, W. 1984. Effects of aldosterone and dexamethasone on Na-permeability in rabbit descending colon.Pfluegers Arch. 400:R28

    Google Scholar 

  • Eldrup, E., Mollgard, K., Bindslev, N. 1980. Possible epithelial sodium channels visualized by freeze fracture.Biochim. Biophys. Acta 596:152–157

    Google Scholar 

  • Frizzell, R.A., Schultz, S.G. 1978. Effect of aldosterone on ion transport by rabbit colon in vitro.J. Membrane Biol. 39:1–26

    Google Scholar 

  • Frizzell, R.A., Turnheim, K. 1978. Ion transport by rabbit colon: II. Unidirectional sodium influx and the effects of amphotericin B and amiloride.J. Membrane Biol. 40:193–211

    Google Scholar 

  • Frömter, E., Higgins, J.T., Gebler, B. 1981. Electrical properties of amphibian urinary bladder epithelia. IV. The current-voltage relationship of the sodium channels in the apical cell membrane.In: Ion Transport by Epithelia. S.G. Schultz, editor. pp. 31–45. Raven, New York

    Google Scholar 

  • Fuchs, W., Hviid Larsen, E., Lindemann, B. 1977. Currentvoltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137–166

    Google Scholar 

  • Funder, J.W., Feldmann, D., Edelman, I.S. 1973. Glucocorticoid receptors in rat kidney: The binding of tritiated-dexamethasone.Endocrinology 92:1005–1013

    Google Scholar 

  • Garcia-Diaz, J.F., Essig, A. 1985. Capacitive transients in voltage-clamped epithelia.Biophys. J. 48:519–523

    Google Scholar 

  • Geering, K., Giradet, M., Bron, C., Kraehenbuhl, J.P., Rossier, B.C. 1982. Hormonal regulation of (Na+K+)-ATPase biosynthesis in the toad bladder. Effects of aldosterone and 3,5,3-triiodo-l-thyronine.J. Biol. Chem. 257:10338–10343

    Google Scholar 

  • Goldmann, G.E. 1943. Potential, impedance and rectification in membranes.J. Gen. Physiol. 27:37–60

    Google Scholar 

  • Helman, S.I., O'Neil, R.G., Fisher, R.S. 1975. Determination of theE Na of frog skin from studies of its current-voltage relationship.Am. J. Physiol. 229:947–951

    Google Scholar 

  • Klemperer, G., Garcia-Diaz, J.F., Nagel, W., Essig, A. 1986. Basolateral membrane potential and conductance in frog skin exposed to high serosal potassium.J. Membrane Biol. 90:89–96

    Google Scholar 

  • Lewis, S.A., Wills, N.K., Eaton, D.C. 1978. Basolateral membrane potential of a tight epithelium: Ionic diffusion and electrogenic pumps.J. Membrane Biol. 41:117–148

    Google Scholar 

  • Li, J.H.Y., Palmer, L.G., Edelman, I.S., Lindemann, B. 1982. The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone.J. Membrane Biol. 64:77–89

    Google Scholar 

  • Marver, D. 1984. Assessment of mineralocorticoid activity in the rabbit colon.Am. J. Physiol. 246:F437-F446

    Google Scholar 

  • Palmer, L.G. 1984. Use of potassium depolarization to study apical transport properties in epithelia.In: Current Topics in Membranes and Transport. J.B. Wade and S.A. Lewis, editors. pp. 105–121. Academic, New York

    Google Scholar 

  • Palmer, L.G., Edelman, I.S., Lindemann, B. 1980. Current-voltage analysis of apical sodium transport in toad urinary bladder. Effects of inhibitors of transport and metabolism.J. Membrane Biol. 57:59–71

    Google Scholar 

  • Palmer, L.G., Li, J.H.Y., Lindemann, B., Edelman, I.S. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder.J. Membrane Biol. 64:91–102

    Google Scholar 

  • Rice, G.E., Skadhauge, E. 1982. Colonic and coprodeal transepithelial transport parameters in NaCl-loaded domestic fowl.J. Comp. Physiol. B 147:65–69

    Google Scholar 

  • Sakauye, C., Feldman, D. 1976. Agonist and antimineralocorticoid activities of spirolactones.Am. J. Physiol. 231:93–97

    Google Scholar 

  • Sandor, T., Skadhauge, E., DiBattista, J.A., Mehdi, A.Z. 1986. Interrelations of the intestinal glucocorticoid and mineralocorticoid receptor systems with salt homeostasis.In: Progress in Avian Osmoregulation. M.R. Hughes and A.C. Chadwick, editors. Leeds Philosophical and Literary Soc., Leeds (in press)

    Google Scholar 

  • Schoen, H.F., Erlij, D. 1985. Current-voltage relations of the apical and basolateral membranes of the frog skin.J. Gen. Physiol. 86:257–287

    Google Scholar 

  • Schultz, S.G. 1979. Application of equivalent electrical circuit models to study of sodium transport across epithelial tissues.Fed. Proc. 38:2024–2029

    Google Scholar 

  • Schultz, S.G. 1981. Homocellular regulatory mechanisms in sodium-transporting epithelia: Avoidance of extinction by “flush-through”.Am. J. Physiol. 241:F579-F590

    Google Scholar 

  • Schultz, S.G. 1984. A cellular model for active sodium absorption by mammalian colon.Annu. Rev. Physiol. 46:435–451

    Google Scholar 

  • Schultz, S.G., Thompson, S.M., Suzuki, Y. 1981. Equivalent electrical circuit models and the study of Na transport across epithelia: I. Nonsteady-state current-voltage relations.Fed. Proc. 40:2443–2449

    Google Scholar 

  • Sellin, J.H., DeSoignie, R.C. 1985. Steroids alter ion transport and absorptive capacity in proximal and distal colon.Am. J. Physiol. 249:G113-G119

    Google Scholar 

  • Skadhauge, E. 1983. Temporal adaptation and hormonal regulation of sodium transport in the avian intestine.In Intestinal Transport. M. Gilles-Baillien and R. Gilles, editors. pp. 284–294. Springer, Berlin-Heidelberg

    Google Scholar 

  • Skadhauge, E. 1984. Introduction of an epithelium with huge variation in sodium transport and novel aldosterone effects.In: Intestinal Absorption and Secretion. E. Skadhauge and K. Heintze, editors. pp. 201–208. MTP Press, Lancaster

    Google Scholar 

  • Skadhauge, E., Clauss, W., Arnason, S.S., Thomas, D.H. 1985. Mineralocorticoid regulation of lower intestinal ion transport.In: Transport Processes, Iono- and Osmoregulation. R. Gilles and M. Gilles-Baillien, editors. pp. 118–133. Springer, Berlin

    Google Scholar 

  • Skadhauge, E., Thomas, D.H., Chadwick, A., Jallageas, M. 1983: Time course of adaptation to low and high NaCl diets in the domestic fowl. Effects on electrolyte excretion and on plasma hormone levels (aldosterone, corticosterone and prolactin).Pfluegers Arch. 396:301–307

    Google Scholar 

  • Tang, J., Abramcheck, F.J., Van Driessche, W., Helman, S.I. 1985. Electrophysiology and noise analysis of K-depolarized epithelia of frog skin.Am. J. Physiol. 249:C421-C429

    Google Scholar 

  • Thomas, D.H., Jallageas, M., Munck, B.G., Skadhauge, E. 1980. Aldosterone effects on electrolyte transport of the lower intestine (coprodeum and colon) of the fowl(Gallus domesticus) in vitro.Gen. Comp. Endocrinol. 40:44–51

    Google Scholar 

  • Thomas, D.H., Skadhauge, E. 1979. Chronic aldosterone therapy and the control of transepithelial transport of ions and water by the colon and coprodeum of the domestic fowl (Gallus domesticus) in vivo.J. Endocrinol. 83:239–250

    Google Scholar 

  • Thomas, D.H., Skadhauge, E. 1982. Time course of adaption to low and high NaCl diets in the domestic fowl. Effects on electrical behaviour of isolated epithelia from the lower intestine.Pfluegers Arch. 395:165–170

    Google Scholar 

  • Thompson, S.M., Sellin, J.H. 1986. Relationships among sodium current, permeability, and Na activities in control and glucocorticoid-stimulated rabbit descending colon.J. Membrane Biol. 92:121–134

    Google Scholar 

  • Thompson, S.M., Suzuki, Y., Schultz, S.G. 1982. The electrophysiology of rabbit descending colon: I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism.J. Membrane Biol. 66:41–54

    Google Scholar 

  • Turnheim, K., Thompson, S.M., Schultz, S.G. 1983. Relation between intracellular sodium and active sodium transport in rabbit colon: Current-voltage relations of the apical sodium entry mechanisms in the presence of varying luminal sodium concentrations.J. Membrane Biol. 76:299–309

    Google Scholar 

  • Will, P.C., DeLisle, R.C., Cortright, R.N., Hopfer, U. 1981. Induction of amiloride-sensitive sodium transport in the intestines by adrenal steroids.Ann. N.Y. Acad. Sci. 372:64–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clauss, W., Dürr, J.E., Guth, D. et al. Effects of adrenal steroids on Na transport in the lower intestine (Coprodeum) of the hen. J. Membrain Biol. 96, 141–152 (1987). https://doi.org/10.1007/BF01869240

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869240

Key Words

Navigation