Skip to main content
Log in

Endogenousd-glucose transport in oocytes ofXenopus laevis

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Endogenous glucose uptake by the oocytes ofXenopus laevis consists of two distinct components: one that is independent of extracellular Na+, and the other one that represents Na+-glucose cotransport. The latter shows similar characteristics as 2 Na+-1 glucose cotransport of epithelial cells: The similarities include the dependencies on external concentrations of Na+, glucose, and phlorizin, and on pH. As in epithelial cells, the glucose uptake in oocytes can also be stimulated by lanthanides. Both the electrogenic cotransport and the inhibition by phlorizin are voltage-dependent; the data are compatible with the assumption that the membrane potential acts as a driving force for the reaction cycle of the transport process. In particular, hyperpolarization seems to stimulat transport by recruitment of substrate binding sites to the outer membrane surface. The results described pertain to oocytes arrested in the prophase of the first meiotic division; maturation of the oocytes leads to a downregulation of both the Na+-independent and the Na+-dependent transport systems. The effect on the Na+-dependent cotransport is the consequence of a change of driving force due to membrane depolarization associated with the maturation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alavi, N., Spangler, R.A., Jung, C.Y. 1987. Sodium-dependent glucose transport by cultured proximal tubule cells.Biochim. Biophys. Acta 899:9–16

    PubMed  Google Scholar 

  • Aronson, P. 1978. Energy-dependence of phlorizin binding to isolated renal microvillus membranes.J. Membrane Biol. 42:81–98

    Google Scholar 

  • Baly, D.L., Horuk, R. 1988. The biology and biochemistry of the glucose transporter.Biochim. Biophys. Acta 947:571–590

    PubMed  Google Scholar 

  • Barnard, E.A., Miledi, R., Sumikawa, K. 1982. Translation of exogenous messenger RNA coding for nicotinic acetylcholine receptors produces functional receptors inXenopus oocytes.Proc. R. Soc. London B 215:241–246

    Google Scholar 

  • Baud, C., Kado, R.T., Marcher, K. 1982. Sodium channels induced by depolarization of theXenopus laevis oocyte.Proc. Natl. Acad. Sci. USA 79:3188–3192

    PubMed  Google Scholar 

  • Bellé, R., Ozon, R., Stinnakre, J. 1977. Free calcium in full grownXenopus laevis oocyte following treatment with ionophore A23187 or progesterone.Mol. Cell. Endocrinol. 8:65–72

    PubMed  Google Scholar 

  • Brot-Laroche, E., Supplisson, S., Delhomme, B., Alcalde, A.I., Alvarado, F. 1987. Characterization of thed-glucose/Na+ cotransport system in the intestinal brush-border membrane by using the specific substrate, methyl α-d-glucopyranoside.Biochim. Biophys. Acta 904:71–80

    PubMed  Google Scholar 

  • Carvallo, P., DeAlbuja, C.M., Allende, C.C., Allende, J.E. 1981. Hormonal regulation of glucose uptake by amphibian follicles.Exp. Cell Res. 136:215–223

    PubMed  Google Scholar 

  • Crane, R.K., Dorando, F.C. 1979. On the mechanism of Na+-dependent glucose transport.In: Function and Moleclar Aspects of Biomembrane Transport. E. Quagliariello et al., editors. pp. 271–278. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Dumont, J.W. 1972. Oogenesis inXenopus laevis (Daudin): I. Stages of oocyte development in laboratory-maintained animals.J. Morphol. 136:153–180

    PubMed  Google Scholar 

  • Eckard, P., Passow, H. 1987. Sodium-dependent and sodium-independent phosphate uptake by full-grown, prophase-arrested oocytes ofXenopus laevis before and after progesterone-induced maturation.Cell Biol. Int. Rep. 11:349–358

    PubMed  Google Scholar 

  • Fuchs, R., Graf, J., Peterlik, M. 1985. Na+-dependentd-glucose transport in brush-border membrane vesicles of chick small intestine: Relation to Na+/H+ exchange and H+ permeability Ann. N. Y. Acad. Sci.456:105–107

    PubMed  Google Scholar 

  • Grygorczyk, R., Hanke-Baier, P., Schwarz, W., Passow, H. 1989. Measurement of erythroid band-3-protein-mediated anion transport in mRNA injected oocytes ofXenopus laevis.Meth. Enzymol. 173:453–466

    PubMed  Google Scholar 

  • Grygorczyk, R., Schwarz, W., Passow, H. 1987. Potential dependence of the “electrically silent” anion exchange across the plasma membrane ofXenopus oocytes mediated by the band-3 protein of mouse red blood cells.J. Membrane Biol. 99:127–136

    Google Scholar 

  • Gundersen, C. B., Miledi, R., Parker, I. 1983 Voltage-operated channels induced by foreign messenger RNA inXenopus oocytes.Proc. R. Soc. London B 220:131–140

    Google Scholar 

  • Hediger, M.A., Coady, M., Ikeda, T.S., Wright, E.M. 1987a. Expression cloning and cDNA sequencing of the Na/glucose cotransporter.Nature (London) 330:379–381

    Google Scholar 

  • Hediger, M.A., Ikeda, T., Coady, M., Gundersen, C.B., Wright, E.M. 1987b. Expression of size-selected mRNA encoding the intestinal Na/glucose cotransporter inXenopus laevis oocytes.Proc. Natl. Acad. Sci. USA 84:2634–2637

    PubMed  Google Scholar 

  • Jung, D., Lafaire, A.V., Schwarz, W. 1984a. Inhibition of Na-alanine cotransport in oocytes ofXenopus laevis during meiotic maturation is voltage-regulated.Pfluegers Arch. 402:39–41

    Google Scholar 

  • Jung, D., Schwarz, W., Passow, H. 1984b. Sodium-alanine cotransport in oocytes ofXenopus laevis: Correlations of alanine and sodium fluxes with potential and current changes.J. Membrane Biol. 78:29–34

    Google Scholar 

  • Kaunitz, J.D., Wright, E.M. 1984. Kinetic of sodiumd-glucose cotransport in bovine intestinal brush border vesicles.J. Membrane Biol. 79:41–51

    Google Scholar 

  • Kimmich, G.A., Randles, J. 1981. α-Methylglucoside satisfies only Na+-dependent transport system of intestinal epithelium.Am. J. Physiol. 241:C227-C232

    PubMed  Google Scholar 

  • Kimmich, G.A., Randles, J. 1984. Sodium-sugar coupling stoichiometry in chick intestinal cells.Am. J. Physiol. 247:C74-C82

    PubMed  Google Scholar 

  • Kimmich, G.A., Randles, J. 1988. Na+-coupled sugar transport: Membrane potential-dependentK m andK i for Na+.Am. J. Physiol. 255:C486-C494

    PubMed  Google Scholar 

  • Kusano, K., Miledi, R., Stinnakre, J. 1982. Cholinergic and catecholaminergic receptors in theXenopus oocyte membrane.J. Physiol. (London) 328:143–170

    Google Scholar 

  • Lafaire, A.V., Schwarz, W. 1986. Voltage dependence of the rheogenic Na+/K+ ATPase in the membrane of oocytes ofXenopus laevis.J. Membrane Biol. 91:43–51

    Google Scholar 

  • Lever, J.E. 1984. A two sodium ion/d-glucose symport mechanism: Membrane potential effects on phlorizin binding.Biochemistry 23:4697–4702

    PubMed  Google Scholar 

  • Lotan, I., Dascal, N., Cohen, S., Lass, Y. 1982. Adenosine-induced slow ionic currents in theXenopus oocyte.Nature (London) 298:572–574

    Google Scholar 

  • Morgan, M., Hanke, P., Grygorczyk, R., Tintschl, A., Fasold, H., Passow, H. 1985. Mediation of anion transport in oocytes ofXenopus laevis by biosynthetically inserted band-3 protein from mouse spleen erythroid cells.EMBO J 4:1927–1931

    PubMed  Google Scholar 

  • Murer, H., Hopfer, U. 1974. Demonstration of electrogenic Na+-dependentd-glucose transport in intestinal brush border membranes.Proc. Natl. Acad. Sci. USA 71:484–488

    PubMed  Google Scholar 

  • Richter, H.-P., Jung, D., Passow, H. 1984. Regulatory changes of membrane transport and ouabain binding during progesterone-induced maturation ofXenopus oocytes.J. Membrane Biol. 79:203–210

    Google Scholar 

  • Robinson, K.R. 1979. Electrical currents through full-grown and maturingXenopus oocytes.Proc. Natl. Acad. Sci. USA 76:837–841

    PubMed  Google Scholar 

  • Schweigert, B., Lafaire, A.V., Schwarz, W. 1988. Voltage dependence of the Na−K ATPase: Measurements of ouabain-dependent membrane current and ouabain binding in oocytes ofXenopus laevis.Pfluegers Arch. 412:579–588

    Google Scholar 

  • Semenza, G., Kessler, M., Hosang, M., Weber, J., Schmidt, U. 1984. Biochemistry of the Na+,d-glucose cotransporter of the small-intestinal brush-border membrane.Biochim. Biophys. Acta 779:343–379

    PubMed  Google Scholar 

  • Stevens, B.R., Kneer, C. 1988. Lanthanide-stimulated glucose and proline transport across rabbit intestinal brush-border membranes.Biochim. Biophys. Acta 942:205–208

    PubMed  Google Scholar 

  • Toggenburger, G., Kessler, M., Semenza, G. 1982. Phlorizin as a probe of the small-intestinal Na+,d-glucose cotransporter.Biochim. Biophys. Acta 688:557–571

    PubMed  Google Scholar 

  • Turner, J., Moran, A. 1982. Further studies of proximal tubular brush border membraned-glucose transport heterogeneity.J. Membrane Biol. 70:37–45

    Google Scholar 

  • Wallace, R.A., Steinhardt, R.A. 1977. Maturation ofXenopus oocytes: II. Observations on membrane potential.Dev. Biol. 57:305–316

    PubMed  Google Scholar 

  • Widdas, W.F. 1988. Old and new concepts of the membrane transport for glucose in cells.Biochim. Biophys. Acta 947:385–404

    PubMed  Google Scholar 

  • Weber, W.M., Schwarz, W., Passow, H. 1988. Glucose transport into oocytes ofXenopus laevis.Pfluegers Arch. (Suppl.)411:R71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, W.M., Schwarz, W. & Passow, H. Endogenousd-glucose transport in oocytes ofXenopus laevis . J. Membrain Biol. 111, 93–102 (1989). https://doi.org/10.1007/BF01869212

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869212

Key Words

Navigation