Skip to main content
Log in

High-affinity sodium-dependent uptake of ascorbic acid by rat osteoblasts

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Ascorbic acid is essential for the formation of bone by osteoblasts, but the mechanism by which osteoblasts transport ascorbate has not been investigated previously. We examined the uptake ofl-[14C]ascorbate by a rat osteoblast-like cell line (ROS 17/2.8) and by primary cultures of rat calvaria cells. In both systems, cells accumulatedl-[14C]ascorbate during incubations of 1–30 min at 37°C. Unlike propionic acid, which diffuses across membranes in protonated form, ascorbic acid did not markedly alter cytosolic pH. Initial ascorbate uptake rate saturated with increasing substrate concentration, reflecting a high-affinity interaction that could be described by Michaelis-Menten kinetics (apparentK m =30±2 μm andV max=1460±140 nmol ascorbate/g protein/min in ROS 17/2.8 cells incubated with 138mm extracellular Na+). Consistent with a stereoselective carrier-mediated mechanism, unlabeledl-ascorbate was a more potent inhibitor (IC50=30±5 μm) ofl-[14C]ascorbate transport than wasd-isoascorbate (IC50=380±55 μm). Uptake was dependent on both temperature and Na+, since it was inhibited by cooling to 4°C and by substitution of K+, Li+ or N-methyl-d-glucamine for extracellular Na+. Decreasing the external Na+ concentration lowered both the affinity of the transporter for ascorbate and the apparent maximum velocity of transport. We conclude that osteoblasts possess a stereoselective, high-affinity, Na+-dependent transport system for ascorbate. This system may play a role in the regulation of bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, R.E., Kemp, J.W., Jee, W.S.S., Woodbury, D.M. 1984. Ion-transporting ATPases and matrix mineralization in cultured osteoblastlike cells.In Vitro 20:837–846

    PubMed  Google Scholar 

  • Behrens, W.A., Madère, R. 1987. A highly sensitive high-erformance liquid chromatography method for the estimation of ascorbic and dehydroascorbic acid in tissues, biological fluids, and foods.Anal. Biochem. 165:102–107

    PubMed  Google Scholar 

  • Bellows, C.G., Aubin, J.E., Heersche, J.N.M., Antosz, M.E. 1986. Mineralized bone nodules formed in vitro from enzymatically released rat calvaria cell populations.Calcif. Tissue Int. 38:143–154

    PubMed  Google Scholar 

  • Bianchi, J., Rose, R.C. 1986. Glucose-independent transport of dehydroascorbic acid in human erythrocytes.Proc. Soc. Exp. Biol. Med. 181:333–337

    PubMed  Google Scholar 

  • Bianchi, J., Wilson, F.A., Rose, R.C. 1986. Dehydroascorbic acid and ascorbic acid transport systems in the guinea pig ileum.Am. J. Physiol. 250:G461-G468

    PubMed  Google Scholar 

  • Bigley, R., Wirth, M., Layman, D., Riddle, M., Stankova, L. 1983. Interaction between glucose and dehydroascorbate transport in human neutrophils and fibroblasts.Diabetes 32:545–548

    PubMed  Google Scholar 

  • Boron, W.F. 1983. Transport of H+ and of ionic weak acids and bases.J. Membrane Biol. 72:1–16

    Google Scholar 

  • Castranova, V., Wright, J.R., Colby, H.D., Miles, P.R. 1983. Ascorbate uptake by isolated rat alveolar macrophages and type II cells.J. Appl. Physiol. 54:208–214

    PubMed  Google Scholar 

  • Chen, T.L., Raisz, L.G. 1975. The effects of ascorbic acid deficiency on calcium and collagen metabolism in cultured fetal rat bones.Calcif. Tissue Res. 17:113–127

    PubMed  Google Scholar 

  • Cullen, E.I., May, V., Eipper, B.A. 1986. Transport and stability of ascorbic acid in pituitary cultures.Mol. Cell. Endocrinol. 48:239–250

    PubMed  Google Scholar 

  • Diliberto, E.J., Jr., Heckman, G.D., Daniels, A.J. 1983. Characterization of ascorbic acid transport by adrenomedullary chromaffin cells.J. Biol. Chem. 258:12886–12894

    PubMed  Google Scholar 

  • Dixon, S.J., Kassim, K.H. 1988. Plasma membrane proton transport by an osteoblast-like cell line. Fourth International Congress of Cell Biology, Montreal, Canada. Abstract #P5.4.13

  • Hammarström, L. 1966. Autoradiographic studies on the distribution of C14-labeled ascorbic acid and dehydroascorbic acid.Acta Physiol. Scand. 70 (Suppl. 289):1–84

    Google Scholar 

  • Ingermann, R.L., Stankova, L., Bigley, R.H. 1986. Role of monosaccharide transporter in vitamin C uptake by placental membrane vesicles.Am. J. Physiol. 250:C637-C641

    PubMed  Google Scholar 

  • Kleyman, T.R., Cragoe, E.J., Jr. 1988. Amiloride and its analogs as tools in the study of ion transport.J. Membrane Biol. 105:1–21

    Google Scholar 

  • Larsson, O.M., Hertz, L., Schousboe, A. 1986. Uptake of GABA and nipecotic acid in astrocytes and neurons in primary cultures: Changes in the sodium coupling ratio during differentiation.J. Neurosci. Res. 16:699–708

    PubMed  Google Scholar 

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurement with the folin phenol reagent.J. Biol. Chem. 193:265–275

    PubMed  Google Scholar 

  • Luben, R.A., Wong, G.L., Cohn, D.V. 1976. Biochemical characterization with parathormone and calcitonin of isolated bone cells: Provisional identification of osteoclasts and osteoblasts.Endocrinology 99:526–534

    PubMed  Google Scholar 

  • Majeska, R.J., Rodan, G.A. 1985. Culture and activity of osteoblasts and osteoblast-like cells.In: The Chemistry and Biology of Mineralized Tissues. W.T. Butler, editor. pp. 279–285. Ebsco Media, Birmingham

    Google Scholar 

  • Mann, G.V., Newton, P. 1975. The membrane transport of ascorbic acid.Ann. NY Acad. Sci. 258:243–252

    PubMed  Google Scholar 

  • Moser, U. 1987. Uptake of ascorbic acid by leukocytes.Ann. NY Acad. Sci. 498:200–215

    PubMed  Google Scholar 

  • Peterkofsky, B., Tschank, G., Luedke, C. 1987. Iron-dependent uptake of ascorbate into isolated microsomes.Arch. Biochem. Biophys. 254:282–289

    PubMed  Google Scholar 

  • Prockop, D.J., Kivirikko, K.I., Tuderman, L., Guzman, N.A. 1979. The biosynthesis of collagen and its disorders.N. Engl. J. Med. 301:13–23

    PubMed  Google Scholar 

  • Rao, L.G., Ng, B., Brunette, D.M., Heersche, J.N.M. 1977. Parathyroid hormone- and prostaglandin E1-response in a selected population of bone cells after repeated subculture and storage at −80°C.Endocrinology 100:1233–1241

    PubMed  Google Scholar 

  • Rose, R.C. 1986. Ascorbic acid transport in mammalian kidney.Am. J. Physiol. 250:F627-F632

    PubMed  Google Scholar 

  • Rose, R.C. 1988. Transport of ascorbic acid and other watersoluble vitamins.Biochim. Biophys. Acta 947:335–366

    PubMed  Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637–718

    PubMed  Google Scholar 

  • Shields, P.P., Gibson, T.R., Glembotski, C.C. 1986. Ascorbate transport by AtT20 mouse pituitary corticotropic tumor cells: Uptake and secretion studies.Endocrinology 118:1452–1460

    PubMed  Google Scholar 

  • Shteyer, A., Gazit, D., Passi-Even, L., Bab, I., Majeska, R., Gronowicz, G., Lurie, A., Rodan, G. 1986. Formation of calcifying matrix by osteosarcoma cells in diffusion chambers in vivo.Calcif. Tissue Int. 39:49–54

    PubMed  Google Scholar 

  • Thomas, J.A., Buchsbaum, R.N., Zimniak, A., Racker, E. 1979. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generatedin situ.Biochemistry 18:2210–2218

    PubMed  Google Scholar 

  • Wagner, E.S., White, W., Jennings, M., Bennett, K. 1987. The entrapment of [14C]ascorbic acid in human erythrocytes.Biochim. Biophys. Acta 902:133–136

    PubMed  Google Scholar 

  • Wheeler, D.D. 1979. A model of high affinity choline transport in rat cortical synaptosomes.J. Neurochem. 32:1197–1213

    PubMed  Google Scholar 

  • Wilson, J.X., Dixon, S.J. 1988. Specific high-affinity uptake of ascorbate by rat osteoblasts in vitro.Physiologist 31:A190Abstr.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, J.X., Dixon, S.J. High-affinity sodium-dependent uptake of ascorbic acid by rat osteoblasts. J. Membrain Biol. 111, 83–91 (1989). https://doi.org/10.1007/BF01869211

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869211

Key Words

Navigation