Skip to main content
Log in

Exchange of HCO 3 for monovalent anions across the human erythrocyte membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

A stopped-flow rapid reaction apparatus was used for measuring changes in extracellular pH (pH o ) of red cell suspensions under conditions wheredpH o /dt was determined by the rate of HCO 3 /X exchange across the membrane (X =Cl, Br, F, I, NO 3 or SCN). The rate of the exchange at 37°C decreased forX in the order: Cl>Br>F>I>NO 3 >SCN, with rate constants in the ratios 1∶0.86∶0.77∶0.55∶0.52∶0.31. When HCO 3 is exchanged for Cl, Br, F, NO 3 or SCN, a change in the rate-limiting step of the process takes place at a transition temperature (T T ) between 16 and 26°C. In I medium, however, no transition temperature is detected between 3 and 42°C. AlthoughT T varies withX , the activation energies both above and belowT T are similar for Cl, Br, NO 3 and F. The values of activation energy are considerably higher whenX =I or SCN. The apparent turnover numbers calculated for HCO 3 /X exchange (except forX =I) at the correspondingT T ranged from 140 to 460 ions/site ·sec for our experimental conditions. These findings suggest that: (i) HCO 3 /X exchange for allX studied takes place via the rapid anion exchange pathway; (ii) the rate of HCO 3 /X exchange is influenced by the specific anions involved in the 1∶1 obligatory exchange; and (iii) the different transition temperatures in the Arrhenius diagrams of the HCO 3 /X exchange do not seem to be directly related to a critical turnover number, but may be dependent upon the influence ofX on protein-lipid interactions in the red blood cell membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R.H. 1961. Internal chloride concentration and chloride efflux of frog muscle.J. Physiol. (London) 156:623

    Google Scholar 

  • Brahm, J. 1977. Temperature-dependent changes of chloride transport kinetics in human red cells.J. Gen. Physiol. 70:283

    Google Scholar 

  • Cabantchik, Z.I., Knauf, P.A., Rothstein, A. 1978. The anion transport system of the red blood cell: The role of membrane protein evaluated by the use of “probes”.Biochim. Biophys. Acta 515:239

    PubMed  Google Scholar 

  • Chapman, D. 1975. Phase transitions and fluidity characteristics of lipids and cell membranes.Q. Rev. Biophys. 8:185

    Google Scholar 

  • Chapman, D., Peel, W.E., Kingston, B., Lilley, T.H. 1977. Lipid phase transitions in model biomembranes. The effect of ions on phosphtidylcholine bilayers.Biochim. Biophys. Acta 464:260

    PubMed  Google Scholar 

  • Chow, E.I., Crandall, E.D., Forster, R.E. 1976. Kinetics of bicarbonate-chloride exchange across the human red blood cell membrane.J. Gen. Physiol. 68:633

    PubMed  Google Scholar 

  • Crandall, E.D., Klocke, R.A., Forster, R.E. 1971. Hydroxyl ion movements across the human erythrocyte membrane.J. Gen. Physiol. 57:664

    PubMed  Google Scholar 

  • Crandall, E.D., Obaid, A.L., Forster, R.E. 1978. Bicarbonate-chloride exchange in erythrocyte suspensions.Biophys. J. 24:35

    PubMed  Google Scholar 

  • Dalmark, M. 1976. Effects of halides and bicarbonate on chloride transport in human red blood cells.J. Gen. Physiol. 67:223

    PubMed  Google Scholar 

  • Dalmark, M., Wieth, J.O. 1972. Temperature dependence of chloride, bromide, iodide, thiocyanate and salicylate transport in human red cells.J. Physiol. (London) 224:583

    Google Scholar 

  • Gunn, R.B. 1972. A titratable carrier model for both mono- and divalent anion transport in human red blood cells.In: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status. M. Rorth and P. Astrup, editors. p. 823. Munksgaard, Copenhagen

    Google Scholar 

  • Gunn, R.B. 1977. A tiratable lock-carrier model for anion transport in red blood cells.Proc. Int. Union Physiol. Sci. (Paris) 12:122

    Google Scholar 

  • Gunn, R.B., Dalmark, M., Tosteson, D.C., Wieth, J.O. 1973. Characteristics of chloride transport in human red blood cells.J. Gen. Physiol. 61:185

    PubMed  Google Scholar 

  • Gunn, R.B., Wieth, J.O., Tosteson, D.C. 1975. Some effects of low pH on chloride exchange in human red blood cells.J. Gen. Physiol. 65:731

    PubMed  Google Scholar 

  • Gros, G., Moll, W. 1971. The diffusion of carbon dioxide in erythrocytes and hemoglobin solutions.Pfluegers Arch. 324:249

    Google Scholar 

  • Gutknecht, J., Bisson, M.A., Tosteson, D.C. 1977. Diffusion of carbon dioxide through lipid bilayer membranes.J. Gen. Physiol. 69:779

    PubMed  Google Scholar 

  • Hutter, O.F., Warner, A.E. 1967. Action of some foreign cations and anions on the chloride permeability of frog muscle.J. Physiol. (London) 189:445

    Google Scholar 

  • Itada, N., Forster, R.E. 1977. Carbonic anhydrase activity in intact red blood cells measured with18O exchange.J. Biol. Chem. 252:3881

    PubMed  Google Scholar 

  • Jacobs, M.H., Stewart, D.R. 1942. The role of carbonic anhydrase in certain ionic exchanges involving the erythrocyte.J. Gen. Physiol. 25:539

    Google Scholar 

  • Lambert, A., Lowe, A.G. 1978. Chloride/bicarbonate exchange in human erythrocytes.J. Physiol. (London) 275:51

    Google Scholar 

  • Lepke, S., Fasold, H., Pring, M., Passow, H. 1976. A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4-4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and its dihydro derivative. (H2DIDS).J. Membrane Biol. 29:147

    Google Scholar 

  • Maren, T.H., Rayburn, C.S., Liddell, N.E. 1976. Inhibition by anions of human red cell carbonic anhydrase B: Physiological and biochemical implications.Science 191:469

    PubMed  Google Scholar 

  • Obaid, A.L., Crandall, E.D. 1979. HCO 3 /Cl exchange across the human erythrocyte membrane: Effects of pH and temperature.J. Membrane Biol. 50:23

    Google Scholar 

  • Obaid, A.L., Critz, A.M., Crandall, E.D. 1979. Kinetics of bicarbonate/chloride exchange in dogfish erythrocytes.Am. J. Physiol. 237:R132

    PubMed  Google Scholar 

  • Parsegian, A. 1969. Energy of an ion crossing a low dielectric membrane: Solutions to four relevant electrostatic problems.Nature (London) 221:844

    Google Scholar 

  • Ross, A.H., McConnell, H.M. 1978. Reconstitution of the erythrocyte anion channel.J. Biol. Chem. 253:4777

    PubMed  Google Scholar 

  • Rothstein, A., Cabantchik, Z.I., Knauf, P. 1976. Mechanism of anion transport in red blood cells: Role of membrane proteins.Fed. Proc. 35:3

    PubMed  Google Scholar 

  • Scatchard, G., Black, E.S. 1949. The effect of salts on the isoionic and isoelectric points of proteins.J. Phys. Colloid Chem. 53:88

    Google Scholar 

  • Silverman, D.N., Tu, C., Wynns, G.C. 1976. Depletion of18O from C18O2 in erythrocyte suspensions.J. Biol. Chem. 251:4428

    PubMed  Google Scholar 

  • Tosteson, D.C. 1959. Halide transport in red blood cells.Acta Physiol. Scand. 46:19

    Google Scholar 

  • Warren, G.E., Bennett, J.P., Hesketh, T.R., Houslay, M.D., Smith, G.A., Metcalfe, J.C. 1975. The lipids surrounding a calcium transport protein: Their role in calcium transport and accumulation.Proc. of the 10th FEBS Meeting, p. 3.

  • Wieth, J.O. 1970. Effect of some monovalent anions on chloride and sulphate permeability of human red cells.J. Physiol. (London) 207:581

    Google Scholar 

  • Wright, E.M., Diamond, J.M. 1977. Anion selectivity in biological systems.Physiol. Rev. 57:109

    PubMed  Google Scholar 

  • Zaki, L., Fasold, H., Schuhmann, B., Passow, H. 1975. Chemical modification of membrane proteins in relation to inhibition of anion exchange in human red blood cells.J. Cell. Physiol. 86:471

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obaid, A.L., Leininger, T.F. & Crandall, E.D. Exchange of HCO 3 for monovalent anions across the human erythrocyte membrane. J. Membrain Biol. 52, 173–179 (1980). https://doi.org/10.1007/BF01869123

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869123

Keywords

Navigation