Skip to main content
Log in

The complete rate equation, including the explicit dependence on Na+ ions, for the influx of α-aminoisobutyric acid into mouse brain slices

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The rate equation, including dependence on Na+-ion concentration for the influx of α-aminoisobutyric acid into mouse brain slices incubated in isotonic glucose medium at 37°C, isv=0.402S/{1.02(1+788/[Na+]2)+S}+0.0477S, wherev=influx in μmol/min, g final wet wt of slices; [Na+]=concentration of Na+ ions in medium, inmm; andS=concentration of α-aminoisobutyric acid in medium, inmm. This equation shows two kinetically independent, parallel pathways of concentrative uptake: one, saturable and dependent on Na+; the other, unsaturable and independent of Na+. Influx is independent of ionic strength, Cl ionper se, and a moderate increase in tonicity. The binding of substrate to the saturable carrier depends on the Na+ concentration; the maximum capacity of this carrier does not. For transport, 2 Na+ ions must interact with each saturable transport site. This does not imply coupling between the flux of Na+ and the flux of α-aminoisobutyric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, P.F., Potashner, S.J. 1971. The dependence of glutamate uptake by crab nerve on external Na+ and K+.Biochim. Biophys. Acta 249:616

    PubMed  Google Scholar 

  • Barber, H.E., Welch, B.L., MacKay, D. 1967. The use of the logarithmic transformation in the calculation of the transport parameters of a system that obeys Michaelis-Menten kinetics.Biochem. J. 103:251

    PubMed  Google Scholar 

  • Bennett, J.P., Jr., Logan, W.J., Snyder, S.H. 1973. Amino acids as central nervous transmitters: The influence of ions, amino acid analogues, and ontology on transport systems forl-glutamic andl-aspartic acids and glycine in central nervous synaptosomes of the rat.J. Neurochem. 21:1533

    PubMed  Google Scholar 

  • Blasberg, R., Lajtha, A. 1965. Substrate specificity of the steady-state amino acid transport in mouse brain slices.Arch. Biochem. Biophys. 112:361

    Google Scholar 

  • Christensen, H.N., Cespedes, C. de, Handlogten, N.E., Ronquist, G. 1973. Energization of amino acid transport studied for the Ehrlich ascites tumor cell.Biochim. Biophys. Acta 300:487

    PubMed  Google Scholar 

  • Cohen, S.R. 1968. “Best values” of Michaelis-Menten kinetic constants from experimental data.Anal. Biochem. 33:549

    Google Scholar 

  • Cohen, S.R. 1972. The estimation of extracellular space of brain tissuein vitro.In: Research Methods in Neurochemistry. N. Marks and R. Rodnight, editors. Vol. 1, Chap. 8, pp. 179–219. Plenum Press, New York-London

    Google Scholar 

  • Cohen, S.R. 1973. The rate equation and activation energies for the uptake of α-aminoisobutyric acid by mouse brain slices.J. Physiol. (London) 228:105

    Google Scholar 

  • Cohen, S.R. 1974a. The contribution of adherent films of liquid on the cut surfaces of mouse brain slices to tissue water and “extracellular” marker spaces.Exp. Brain Res. 20:421

    PubMed  Google Scholar 

  • Cohen, C.R. 1974b. The dependence of water content and “extracellular” marker spaces of incubated mouse brain slices on thickness: Alterations produced by slicing, and fluid spaces in intact and altered tissue.Exp. Brain Res. 20:435

    PubMed  Google Scholar 

  • Cohen, S.R. 1975. A comparison of the rate equations, kinetic parameters, and activation energies for the initial uptake ofl-lysine,l-valine, γ-aminobutyric acid, and α-aminoisobutyric acid by mouse brain slices.J. Membrane Biol. 22:53

    Google Scholar 

  • Cohen, S.R., Blasberg, R., Levi, G., Lajtha, A. 1968. Compartmentation of the inulin space in mouse brain slices.J. Neurochem. 15:707

    Google Scholar 

  • Cohen, S.R., Lajtha, A. 1970. The effect of tonicity,d-mannitol,d-sorbitol, and choline chloride on the water content of mouse brain slices, and on the compartmentation of the space indicated by “extracellular space markers”.Brain Res. 23:77

    PubMed  Google Scholar 

  • Cohen, S.R., Stampleman, P.F., Lajtha, A. 1970. The temperature-dependent compartmentation of the “extracellular space” in mouse brain slices as revealed by the markers: inulin, sucrose,d-mannitol,d-sorbitol and sulfate.Brain Res. 21:419

    PubMed  Google Scholar 

  • Eavenson, E., Christensen, H.N. 1967. Transport systems for neutral amino acids in the pigeon erythrocyte.J. Biol. Chem. 242:5386

    PubMed  Google Scholar 

  • Eddy, A.A., Mulcahy, M.F., Thomson, P.J. 1967. The effects of sodium ions and potassium ions on glycine uptake by mouse ascites-tumour cells in the presence and absence of selected metabolic inhibitors.Biochem. J. 103:863

    PubMed  Google Scholar 

  • Evans, P.D. 1973. The uptake ofl-glutamate by the peripheral nerves of the crab,Carcinus maenas (L).Biochim. Biophys. Acta 311:302

    PubMed  Google Scholar 

  • Evans, P.D. 1975. The uptake ofl-glutamate by the central nervous system of the cockroachPeriplaneta americana.J. Exp. Biol. 62:55

    PubMed  Google Scholar 

  • Finerman, G.A.M., Rosenberg, L.E. 1966. Amino acid transport in bone. Evidence for separate transport systems for neutral amino and imino acids.J. Biol Chem. 241:1487

    PubMed  Google Scholar 

  • Geck, P., Heinz, E., Pfeiffer, B. 1972. The degree and the efficiency of coupling between the influxes of Na+ and α-aminoisobutyrate in Ehrlich cells.Biochim. Biophys. Acta 288:486

    PubMed  Google Scholar 

  • Halpern, Y.S., Barash, H., Dover, S., Druck, K. 1973. Sodium and potassium requirements for active transport of glutamate byEscherichia coli K-12.J. Bacteriol. 114:53

    PubMed  Google Scholar 

  • Hillman, R.E., Otto, E.F. 1974. Transport ofl-isoleucine by cultured human fibroblasts: Uptake by normal cell lines and isolation of a cell line lacking sodium-dependent uptake.J. Biol. Chem. 249:3430

    PubMed  Google Scholar 

  • Inui, Y., Christensen, H.N. 1966. Discrimination of single transport systems. The Na+-sensitive transport of neutral amino acids in the Ehrlich cell.J. Gen. Physiol. 50:203

    Google Scholar 

  • Jacquez, J.A. 1973. Sodium dependence of maximum fluxJ M , andK m of amino acid transport in Ehrlich ascites cells.Biochim. Biophys. Acta 318:411

    Google Scholar 

  • Jacquez, J.A., Sherman, J.H., Terris, J. 1970. Temperature dependence of amino acid transport in Ehrlich ascites cells: with results which bear on theA-L distinction.Biochim. Biophys. Acta 203:150

    PubMed  Google Scholar 

  • Joanny, P., Natali, J.-P., Hillman, H., Coriol, J. 1973. The uptake and efflux ofl-phenylalanine andl-tyrosine from rat brain cerebral cortex slices.Biochem. J. 136:77

    PubMed  Google Scholar 

  • Kanner, B.I. 1978. Active transport of γ-aminobutyric acid by membrane vesicles isolated from rat brain.Biochemistry 17:1207

    PubMed  Google Scholar 

  • Kimmich, G.A. 1973. Coupling between Na+ and sugar transport in small intestine.Biochim. Biophys. Acta 300:31

    PubMed  Google Scholar 

  • Kotak, A. 1973. Mechanisms of nonelectrolyte transport.Biochim. Biophys. Acta 300:183

    PubMed  Google Scholar 

  • Lajtha, A., Sershen, H. 1975a. Changes in amino acid influx with Na+ flow in incubated slices of mouse brain.Brain Res. 84:429

    PubMed  Google Scholar 

  • Lajtha, A., Sershen, H. 1975b. Inhibition of amino acid uptake by the absence of Na+ in slices of brain.J. Neurochem. 24:667

    PubMed  Google Scholar 

  • Margolis, R.K., Lajtha, A. 1968. Ion dependence of amino acid uptake in brain slices.Biochim. Biophys. Acta 163:374

    PubMed  Google Scholar 

  • Martin, D.L. 1973. Kinetics of the sodium-dependent transport of gamma-aminobutyric acid by synaptosomes.J. Neurochem. 21:345

    PubMed  Google Scholar 

  • Matthews, R.H., Leslie, C.A., Sholefield, P.G. 1970. Histidine uptake and exchange in S37 ascites tumor cells.Biochim. Biophys. Acta 203:457

    PubMed  Google Scholar 

  • McClellan, W.M., Schafer, J.A. 1973. Transport of the amino acid analog, 2-aminobicyclo(2,2,1)-heptane-2-carboxylic acid, by Ehrlich ascites tumor cells.Biochim. Biophys. Acta 311:462

    PubMed  Google Scholar 

  • McIlwain, H., Buddle, H.L. 1953. Techniques in tissue metabolism. I. A mechanical chopper.Biochem. J. 53:412

    PubMed  Google Scholar 

  • Nakazawa, S., Quastel, J.H. 1968. Effects of inorganic salts and of ouabain on some metabolic responses of rat cerebral cortex slices to cationic and electrical stimulations.Can. J. Biochem. 46:355

    PubMed  Google Scholar 

  • Navon, S., Lajtha, A. 1969. The uptake of amino acids by particulate fractions from brain.Biochim. Biophys. Acta 173:518

    PubMed  Google Scholar 

  • Peterson, N.A., Raghupathy, E. 1972. Characteristics of amino acid accumulation by synaptosomal particles isolated from rat brain.J. Neurochem. 19:1423

    PubMed  Google Scholar 

  • Peterson, N.A., Raghupathy, E. 1973. Developmental transitions in uptake of amino acids by synaptosomal fractions isolated from rat cortex.J. Neurochem. 21:97

    PubMed  Google Scholar 

  • Peterson, N.A., Raghupathy, E. 1978. Evidence for strictly Na+-dependent accumulation of serine and threonine in brain cortical synaptosomes from newborn rats.J. Neurochem. 31:989

    PubMed  Google Scholar 

  • Potashnar, S.J., Johnstone, R.M. 1971. Cation gradients, ATP and amino acid accumulation in Ehrlich ascites cells.Biochim. Biophys. Acta 233:91

    PubMed  Google Scholar 

  • Schafer, J.A., Jacquez, J.A. 1967. Changes in Na+ uptake during amino acid transport.Biochim. Biophys. Acta 135:1081

    PubMed  Google Scholar 

  • Schuberth, J., Sundwall, A., Sörbo, B., Lindell, J.-O. 1966. Uptake of choline by mouse brain slices.J. Neurochem. 13:347

    Google Scholar 

  • Schultz, S.G., Curran, P.F. 1970. Coupled transport of sodium and organic solutes.Physiol. Rev. 50:637

    PubMed  Google Scholar 

  • Sprott, G.D., Drozdowski, J.P., Martin, E.L., MacLeod, R.A. 1975. Kinetics of Na+-dependent amino acid transport using cells and membrane vesicles of a marine pseudomonad.Can. J. Microbiol. 21:43

    PubMed  Google Scholar 

  • Stallcup, W.B., Bullock, K., Baetge, E.E. 1979. Coupled transport of glutamate and sodium in a cerebellar nerve cell line.J. Neurochem. 32:57

    PubMed  Google Scholar 

  • Thomas, E.L., Christensen, H.N. 1971. Nature of the cosubstrate action of Na+ and neutral amino acids in a transport system.J. Biol. Chem. 246:1682

    Google Scholar 

  • Vidaver G.A. 1964a. Transport of glycine by pigeon red cells.Biochemistry 3:662

    Google Scholar 

  • Vidaver, G.A. 1964b. Mucate inhibition of glycine entry into pigeon red cells.Biochemistry 3:799

    Google Scholar 

  • Vidaver, G.A. 1964c. Some tests of the hypothesis that the sodium-ion gradient furnishes the energy for glycine-active transport by pigeon red cells.Biochemistry 3:803

    Google Scholar 

  • Wheeler, D.D. 1976. A kinetic analysis of sodium dependent glutamic acid transport in peripheral nerve.J. Neurochem. 26:239

    PubMed  Google Scholar 

  • Wheeler, D.D., Hollingsworth, R.G. 1978. A model of high affinity glutamic acid transport by cortical synaptosomes from the Long-Evans rat.J. Neurochem. 30:1311

    PubMed  Google Scholar 

  • Wheeler, K.P., Christensen, H.N. 1967a. Role of Na+ in the transport of amino acids in rabbit red cells.J. Biol. Chem. 242:1450

    PubMed  Google Scholar 

  • Wheeler, K.P., Christensen, H.N. 1967b. Interdependent fluxes of amino acids and sodium ion in the pigeon red blood cell.J. Biol. Chem. 242:3782

    PubMed  Google Scholar 

  • Wheeler, K.P., Inui, Y., Hollenberg, P.F., Eavenson, E., Christensen, H.N. 1965. Relation of amino acid transport to sodium-ion concentration.Biochim. Biophys. Acta 109:620

    PubMed  Google Scholar 

  • Wilbrandt, W. 1975. Recent trends in membrane transport research.Life Sci. 16:201

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, S.R. The complete rate equation, including the explicit dependence on Na+ ions, for the influx of α-aminoisobutyric acid into mouse brain slices. J. Membrain Biol. 52, 95–105 (1980). https://doi.org/10.1007/BF01869114

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869114

Keywords

Navigation