Skip to main content
Log in

Multiple separatrix crossing in multi-degree-of-freedom Hamiltonian flows

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Summary

We study separatrix crossing in near-integrablek-degree-of-freedom Hamiltonian flows, 2 <k < ∞, whose unperturbed phase portraits contain separatrices inn degrees of freedom, 1 <n <k. Each of the unperturbed separatrices can be recast as a codimension-one separatrix in the 2k-dimensional phase space, and the collection of these separatrices takes on a variety of geometrical possibilities in the reduced representation of a Poincaré section on the energy surface. In general 0 ≤ln of the separatrices will be available to the Poincaré section, and each separatrix may be completely isolated from all other separatrices or intersect transversely with one or more of the other available separatrices. For completely isolated separatrices, transitions across broken separatrices are described for each separatrix by the single-separatrix crossing theory of Wiggins, as modified by Beigie. For intersecting separatrices, a possible violation of a normal hyperbolicity condition complicates the analysis by preventing the use of a persistence and smoothness theory for compact normally hyperbolic invariant manifolds and their local stable and unstable manifolds. For certain classes of multi-degree-of-freedom flows, however, a local persistence and smoothness result is straightforward, and we study the global implications of such a local result. In particular, we find codimension-one partial barriers and turnstile boundaries associated with each partially destroyed separatrix. From the collection of partial barriers and turnstiles follows a rich phase space partitioning and transport formalism to describe the dynamics amongst the various degrees of freedom. A generalization of Wiggins' higher-dimensional Melnikov theory to codimension-one surfaces in the multi-separatrix case allows one to uncover invariant manifold geometry. In the context of this perturbative analysis and detailed numerical computations, we study invariant manifold geometry, phase space partitioning, and phase space transport, with particular attention payed to the role of a vanishing frequency in the limit approaching the intersection of the partially destroyed separatrices. The class of flows under consideration includes flows of basic physical relevance, such as those describing scattering phenomena. The analysis is illustrated in the context of a detailed study of a 3-degree-of-freedom scattering problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold,Geometric Methods in the Theory of Ordinary Differential Equations. Springer-Verlag, Berlin, 1978.

    Google Scholar 

  2. D. Beigie, A. Leonard, and S. Wiggins, A global study of enhanced stretching and diffusion in chaotic tangles,Phys. Fluids A 3 (1991) 1039–1050.

    Google Scholar 

  3. D. Beigie, A. Leonard, and S. Wiggins, Chaotic transport in the homoclinic and heteroclinic tangle regions of quasiperiodically forced two-dimensional dynamical systems,Nonlinearity 4 (1991) 775–819.

    Google Scholar 

  4. D. Beigie, A. Leonard, and S. Wiggins, The dynamics associated with the chaotic tangles of two-dimensional quasiperiodic vector fields: Theory and applications, inNonlinear Phenomena in Atmospheric and Oceanic Sciences, IMA Volumes in Mathematics and Its Applications, vol. 40, G. F. Carnevale and R. T. Pierrehumbert, eds. Springer-Verlag, New York, 1992, 47–138.

    Google Scholar 

  5. D. Beigie and S. Wiggins, Dynamics associated with a quasiperiodically forced Morse oscillator: Application to molecular dissociation,Phys. Rev. A 45 (1992) 4803–4827.

    Google Scholar 

  6. D. Beigie, A. Leonard, and S. Wiggins, Statistical relaxation under nonturbulent chaotic flows: Non-Gaussian high-stretch tails of finite-time Lyapunov exponent distributions,Phys. Rev. Lett. 70 (1993) 275–278.

    Google Scholar 

  7. D. Beigie, A. Leonard, and S. Wiggins, Invariant manifold templates for chaotic advection.Chaos Solitons Fractals (special issue; Chaos applied to fluid mixing; guest editor Hassan Aref) 4 (1994) 749–868.

    Google Scholar 

  8. D. Beigie, Codimension-one partitioning and phase space transport in multi-degree-of-freedom Hamiltonian systems with non-toroidal invariant manifold intersections.Chaos Solitons Fractals (special issue; Decidability and predictability in the theory of dynamical systems; guest editor Mario Rasetti) 5 (1995) 177–211.

  9. D. Beigie, Multiple separatrix crossing in multi-degree-of-freedom Hamiltonian flows: Global geometry and phase space transport associated with multiple partial barriers and turnstiles, Cornell Theory Center Technical Report CTC94TR199 (1994).

  10. D. Bensimon and L. P. Kadanoff, Extended chaos and disappearance of KAM trajectories,Physica D 13 (1984) 82–89.

    Google Scholar 

  11. R. Camassa and S. Wiggins, Chaotic advection in a Rayleigh-Bénard flow,Phys. Rev. A 43 (1991) 774–797.

    Google Scholar 

  12. M. J. Davis and S. K. Gray, Unimolecular reactions and phase space bottlenecks,J. Chem. Phys. 84 (1986) 5389–5411.

    Google Scholar 

  13. J. Dereziński, Large time behavior of classical N-body systems,Commun. Math. Phys. 148 (1992) 503–520.

    Google Scholar 

  14. R. W. Easton, Trellises formed by stable and unstable manifolds in the plane,Trans. Am. Math. Soc. 244 (1986) 719–732.

    Google Scholar 

  15. R. W. Easton, Transport through chaos,Nonlinearity 4 (1991) 583–590.

    Google Scholar 

  16. R. W. Easton, J. D. Meiss, and S. Carver, Exit times and transport for symplectic twist maps,Chaos 3 (1993) 153–165.

    Google Scholar 

  17. N. Fenichel, Persistence and smoothness of invariant manifolds for flows,Indiana Univ. Math. J. 21 (1971) 193–226.

    Google Scholar 

  18. R. E. Gillilan and G. S. Ezra, Transport and turnstiles in multidimensional Hamiltonian mappings for unimolecular fragmentation: Application to van der Waals predissociation,J. Chem. Phys. 94 (1991) 2648–2668.

    Google Scholar 

  19. G. M. Graf, Asymptotic completeness for N-body short-range quantum systems: A new proof,Commun. Math. Phys. 132 (1990) 73–101.

    Google Scholar 

  20. S. K. Gray, S. A. Rice, and M. J. Davis, Bottlenecks to unimolecular reactions and an alternative form for classical RRKM theory,J. Phys. Chem. 90 (1986) 3470–3482.

    Google Scholar 

  21. J. Guckenheimer and P. J. Holmes,Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, Berlin, 1983.

    Google Scholar 

  22. P. J. Holmes and J. E. Marsden, Melnikov's method and Arnold diffusion for perturbations of integrable Hamiltonian systems,J. Math. Phys. 23 (1982) 669–675.

    Google Scholar 

  23. W. Hunziker, The S-matrix in classical mechanics,Commun. Math. Phys. 8 (1968) 282–299.

    Google Scholar 

  24. W. Hunziker, Scattering in classical mechanics, inScattering Theory in Mathematical Physics, J. A. La Vita and J.-P. Marchand, eds. Reidel, Dordrecht, Holland, 1974, 79–96.

    Google Scholar 

  25. I. S. Kang and L. G. Leal, Bubble dynamics in time-periodic straining flows,J. Fluid Mech. 218 (1990) 41–69.

    Google Scholar 

  26. T. J. Kaper and S. Wiggins, Lobe area in adiabatic Hamiltonian systems,Physica D 51 (1991) 205–212.

    Google Scholar 

  27. G. Kovačič, Lobe area via action formalism in a class of Hamiltonian systems,Physica D 51 (1991) 226–233.

    Google Scholar 

  28. J. G. Leopold and I. C. Percival, Microwave ionization and excitation of Rydberg atoms,Phys. Rev. Lett. 41 (1978) 944–947.

    Google Scholar 

  29. R. S. MacKay, J. D. Meiss, and I. C. Percival, Transport in Hamiltonian systems,Physica D 13 (1984) 55–81.

    Google Scholar 

  30. R. S. MacKay, J. D. Meiss, and I. C. Percival, Resonances in area-preserving maps,Physica D 27 (1987) 1–20.

    Google Scholar 

  31. R. S. MacKay and J. D. Meiss, Relation between quantum and classical thresholds for multiphoton ionization of excited atoms,Phys. Rev. A 37 (1988) 4702–4706.

    Google Scholar 

  32. C. C. Martens, M. J. Davis, and G. S. Ezra, Local frequency analysis of chaotic motion in multidimensional systems: Energy transport and bottlenecks in planar OCS,Chem. Phys. Lett. 142 (1987) 519–528.

    Google Scholar 

  33. N. Martin, G. Delgado-Barrio, P. Villarreal, P. Mareca, and S. Miret-Artes, Classical trajectory study of tetraatomic van der Waals molecules: Complex He-I2-Ne,J. Mol. Struct. 142 (1986) 501–504.

    Google Scholar 

  34. J. D. Meiss and E. Ott, Markov tree model of transport in area-preserving maps,Physica D 20 (1986) 387–402.

    Google Scholar 

  35. J. D. Meiss, Symplectic maps, variational principles, and transport,Rev. Mod. Phys. 64 (1992) 795–848.

    Google Scholar 

  36. M. Mijatović and K. Trenčevski, Caustics of classical particle scattering,Physica A 164 (1990) 503–514.

    Google Scholar 

  37. R. T. Prosser, On the asymptotic behavior of certain dynamical systems,J. Math. Phys. 13 (1972) 186–196.

    Google Scholar 

  38. M. Reed and B. Simon,Methods of Modern Mathematical Physics, III: Scattering Theory. Academic Press, London, 1979.

    Google Scholar 

  39. V. Rom-Kedar and S. Wiggins, Transport in two-dimensional maps,Arch. Rational Mech. Anal. 109 (1990) 239–298.

    Google Scholar 

  40. V. Rom-Kedar, A. Leonard, and S. Wiggins, An analytical study of transport, mixing and chaos in an unsteady vortical flow,J. Fluid Mech. 214 (1990) 347–394.

    Google Scholar 

  41. G. C. Schatz, V. Buch, M. A. Ratner, and R. B. Gerber, Dissociation dynamics of vibrationally excited van der Waals clusters: I2XY→ I2 +X+ Y (X,Y= He,Ne),J. Chem. Phys. 79 (1983) 1808–1822.

    Google Scholar 

  42. B. Simon, Wave operators for classical particle scattering,Commun. Math. Phys. 23 (1971) 37–48.

    Google Scholar 

  43. L. Spitzer, Jr.,Dynamical Evolution of Globular Clusters. Princeton University Press, Princeton, NJ, 1987.

    Google Scholar 

  44. W. Thirring, Classical scattering theory,Acta Phys. Austriaca Suppl. XXIII (1981) 3–28.

    Google Scholar 

  45. W. Thirring,A Course in Mathematical Physics 1: Classical Dynamical Systems. Springer-Verlag, New York, 1992.

    Google Scholar 

  46. S. Wiggins,Global Bifurcations and Chaos—Analytical Methods. Springer-Verlag, New York, 1988.

    Google Scholar 

  47. S. Wiggins, The geometry of transport in phase space I. Transport ink-degree-of-freedom Hamiltonian systems, 2 ≤k < ∞,Physica D 44 (1990) 471–501.

    Google Scholar 

  48. S. Wiggins,Chaotic Transport in Dynamical Systems. Springer-Verlag, New York, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beigie, D. Multiple separatrix crossing in multi-degree-of-freedom Hamiltonian flows. J Nonlinear Sci 5, 57–103 (1995). https://doi.org/10.1007/BF01869100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869100

Key words

Navigation