Skip to main content
Log in

Effect of amiloride on conductance of toad urinary bladder

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The transepithelial conductance of toad bladder epithelia and the amplitude of the fluctuations of this conductance caused by the action of the underlying smooth muscle have been further investigated. In particular, amiloride was found to reduce both tissue conductance and its fluctuating component to the same extent. Analysis suggests that the steady-state conductance of the toad urinary bladder may be associated only with the paracellular pathway for ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beauwens, R., Al-Awqati, Q. 1976. Further studies on coupling between sodium transport and respiration in toad urinary bladder.Am. J. Physiol. 231:222

    Google Scholar 

  • Bentley, P.J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. (London) 195:317

    Google Scholar 

  • Biber, T.U.L., Mullen, T.L. 1977. Effect of inhibitors on transepithelial efflux of Na and nonelectrolytes in frog skin.Am. J. Physiol. 232:C67

    Google Scholar 

  • Boulpaep, E.L. 1976. Electrical phenomena in the nephron.Kidney Int. 9:88

    Google Scholar 

  • Canessa, M., Labarca, P., Leaf, A. 1976. Metabolic evidence that serosal sodium does not recycle through the active transepithelial transport pathway of toad bladder.J. Membrane Biol. 30:65

    Google Scholar 

  • Civan, M.M., DiBona, D.R. 1978. Pathways for movement of ions and water across toad urinary bladder. III. Physiologic significance of the paracellular pathway.J. Membrane Biol. 38:359

    Google Scholar 

  • Diamond, J.M., Bossert, W.H. 1967. Standing-gradient osmotic flow: A mechanism for coupling of water and solute transport in epithelia.J. Gen. Physiol. 50:2061

    Google Scholar 

  • DiBona, D.R. 1972. Passive intercellular pathways in amphibian epithelia.Nature (London) 238:179

    Google Scholar 

  • DiBona, D.R., Civan, M.M. 1973. Pathways for movement of ions and water across toad urinary bladder. I. Anatomic site of transepithelial shunt pathways.J. Membrane Biol. 12:101

    Google Scholar 

  • Erlij, D. 1976. Basic electrical properties of tight epithelia determined with a simple method.Pfluegers Arch. 364:91

    Google Scholar 

  • Farquhar, M., Palade, G.E. 1963. Junctional complexes in various epithelia.J. Cell Biol. 17:374

    Google Scholar 

  • Frömter, E., Gebler, B. 1977. Electrical properties of amphibian urinary bladder epithelia. III. The cell membrane resistances and the effect of amiloride.Pfluegers Arch. 371:99

    Google Scholar 

  • Fuchs, W., Larsen, E.H., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137

    Google Scholar 

  • Gordon, L.G.M. 1978a. The electrical resistance of epithelia in the presence of osmotic and hydrostatic pressure gradients.J. Theor. Biol. 72:545

    Google Scholar 

  • Gordon, L.G.M. 1978b. Cellular and shunt conductances of toad bladder epithelium.J. Membrane Biol. 44:309

    Google Scholar 

  • Helman, S.I., Fisher, R.S. 1977. Microelectrode studies of the active Na transport pathway of frog skin.J. Gen. Physiol. 69:571

    Google Scholar 

  • Higgins, J.T., Jr., Cesaro, L., Gebler, B., Frömter, E. 1975. Electrical properties of amphibian urinary bladder epithelia. I. Inverse relationship between potential difference and resistance in tightly mounted preparations.Pfluegers Arch. 358:41

    Google Scholar 

  • Hong, C.D., Essig, A. 1976. Effects of 2-deoxy-d-glucose, amiloride, vasopressin, and ouabain on active conductance andE Na in the toad bladder.J. Membrane Biol. 28:121

    Google Scholar 

  • Labarca, P., Canessa, M., Leaf, A. 1977. Metabolic cost of sodium transport in toad urinary bladder.J. Membrane Biol. 32:383

    Google Scholar 

  • Larsen, E.H. 1973. Effect of amiloride, cyanide and ouabain on the active transport pathway in toad skin.In: Transport Mechanisms in Epithelia. H.H. Ussing and N.A. Thorn, editors. p. 131. Copenhagen, Munksgaard

    Google Scholar 

  • Machen, T.E., Diamond, J.M. 1969. An estimate of the salt concentration in the lateral intercellular spaces of rabbit gallbladder during maximal fluid transport.J. Membrane Biol. 1:194

    Google Scholar 

  • Macknight, A.D.C. 1977. The contribution of mucosal chloride to chloride in toad bladder epithelial cells.J. Membrane Biol. 36:55

    Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975. The sodium transport pool in toad urinary bladder epithelial cells.J. Membrane Biol. 20:365

    Google Scholar 

  • Macknight, A.D.C., McLaughlin, C.W. 1977. Transepithelial sodium transport and CO2 production by the toad urinary bladder in the absence of serosal sodium.J. Physiol. (London) 269:767

    Google Scholar 

  • Nagel, W. 1976. The intracellular electrical potential profile of the frog skin epithelium.Pfluegers Arch. 365:135

    Google Scholar 

  • O'Neill, R.G., Helman, S.I. 1976. Influence of vasopressin and amiloride on shunt pathways of frog skin.Am. J. Physiol. 231:164

    Google Scholar 

  • Reuss, L., Finn, A.L. 1974. Passive electrical properties of toad urinary bladder epithelium. Intercellular electrical coupling and transepithelial cellular and shunt conductances.J. Gen. Physiol. 64:1

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975a. Dependence of serosal membrane potential on mucosal membrane potential in toad urinary bladder.Biophys. J. 15:71

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975b. Effects of changes in the composition of the mucosal solution on the electrical properties of the toad urinary bladder epithelium.J. Membrane Biol. 20:191

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. III. Exchangeability of epithelial cellular potassium.J. Membrane Biol. 26:269

    Google Scholar 

  • Schultz, S.G., Frizzell, R.A., Nellans, H.N. 1977. Active sodium transport and the electrophysiology of rabbit colon.J. Membrane Biol. 33:351

    Google Scholar 

  • Sudou, K., Hoshi, T. 1977. Mode of action of amiloride in toad urinary bladder. An electrophysiolgical study of the drug action on sodium permeability of the mucosal border.J. Membrane Biol. 32:115

    Google Scholar 

  • Urakabe, S., Handler, J.S., Orloff, J. 1970. Effect of hypertonicity on permeability properties of the toad urinary bladder.Am. J. Physiol. 218:1179

    Google Scholar 

  • Ussing, H.H., Zerahn, K. 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin.Acta Physiol. Scand. 23:110

    Google Scholar 

  • Vieira, F.L., Caplan, S.R., Essig, A. 1972. Energetics of sodium transport in frog skin. II. The effects of the electrical potential on oxygen consumption.J. Gen. Physiol. 59:77

    Google Scholar 

  • Wade, J.B., Revel, J.P., DiScala, V.A. 1973. Effect of osmotic gradients on intercellular junctions of the toad bladder.Am. J. Physiol. 224:407

    Google Scholar 

  • Yonath, J., Civan, M.M. 1971. Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin.J. Membrane Biol. 5:366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, L.G.M. Effect of amiloride on conductance of toad urinary bladder. J. Membrain Biol. 52, 61–67 (1980). https://doi.org/10.1007/BF01869006

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869006

Keywords

Navigation