Skip to main content
Log in

Relationship of transient electrical properties to active sodium transport by toad urinary bladder

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Application of voltage pulses of 10 mV for periods of 9 sec across toad urinary bladder elicits a rapid deflection in transepithelial current. Frequently, the current decays back towards its baseline value during the course of the polarizing pulse. This transient phenomenon can be induced, or its magnitude increased, by raising the mucosal or serosal Na+ concentration. The transient can be abolished by sufficiently hyperpolarizing the tissue (rendering serosa positive to mucosa), by inhibiting transcellular Na+ transport with amiloride or ouabain, and by increasing the serosal K+ concentration. Vasopressin increases net Na+ movement across toad bladder but does not elicit these transients. It is proposed as a working hypothesis for further study that the transient behavior characterized in this study reflects: (1) the partition of Na+ between the apical plasma membrane and contiguous fluid layers, (2) the partition of K+ between the basolateral plasma membrane and adjacent submucosal fluid layer, and (3) the negative feedback interaction between intracellular Na+ activity and Na+ permeability of the apical plasma membrane of the transporting cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry, P.H. 1977. Transport number effects in the transverse tubular system and their implications for low frequency impedance measurement of capacitance of skeletal muscle fibers.J. Membrane Biol. 34:383

    Google Scholar 

  • Bentley, P.J. 1968. Amiloride: A potent inhibitor of sodium transport across the toad bladder.J. Physiol. (London) 195:317

    Google Scholar 

  • Biber, T.U.L. 1971. Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin.J. Gen. Physiol. 58:131

    Google Scholar 

  • Bindslev, N., Tormey, J.McD., Wright, E.M. 1974. The effects of electrical and osmotic gradients on lateral intercellular spaces and membrane conductance in a low resistance epithelium.J. Membrane Biol. 19:357

    Google Scholar 

  • Civan, M.M. 1970. Effects of active sodium transport on currentvoltage relationship of toad bladder.Am. J. Physiol. 219:234

    Google Scholar 

  • Civan, M.M., DiBona, D.R. 1978. Pathways for movement of ions and water across toad urinary bladder: III. Physiologic significance of the paracellular pathway.J. Membrane Biol. 38:359

    Google Scholar 

  • Civan, M.M., Frazier, H.S. 1968. The site of stimulatory action of vasopressin on sodium transport in toad bladder.J. Gen. Physiol. 51:589

    Google Scholar 

  • Civan, M.M., Hoffman, R.E. 1971. Effect of aldosterone on the electrical resistance of toad bladder.Am. J. Physiol. 220:324

    Google Scholar 

  • Civan, M.M., Kedem, O., Leaf, A. 1966. Effect of vasopressin on toad bladder under conditions of zero net sodium transport.Am. J. Physiol. 211:569

    Google Scholar 

  • Cuthbert, A.W., Shum, W.K. 1976. Effects of depolarization on amiloride binding by the frog skin.J. Physiol. (London) 255:604

    Google Scholar 

  • Davies, H.E.F., Martin, D.G., Sharp, G.W.G. 1968. Differences in the physiological characteristics of bladders from different geographical sources.Biochim. Biophys. Acta 150:315

    Google Scholar 

  • DiBona, D.R., Civan, M.M., Leaf, A. 1969. The anatomic site of the transepithelial permeability barriers of toad bladder.J. Cell Biol. 40:1

    Google Scholar 

  • Dörge, A., Nagel, W. 1970. Effect of amiloride on sodium transport in frog skin.Pfluegers Arch. 321:91

    Google Scholar 

  • Ehrlich, E.N., Crabbé, J. 1968. The mechanism of action of amipramizide.Pfluegers Arch. 302:79

    Google Scholar 

  • Finkelstein, A. 1964. Electrical excitability of isolated frog skin and toad bladder.J. Gen. Physiol. 47:545

    Google Scholar 

  • Finn, A.L., Bright, J. 1978. The paracellular pathway in toad urinary bladder: Permselectivity and kinetics of opening.J. Membrane Biol. 44:67

    Google Scholar 

  • Frazier, H.S., Dempsey, E.F., Leaf, A. 1962. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin.J. Gen. Physiol. 45:529

    Google Scholar 

  • Fuchs, W., Larsen, E.H., Lindemann, B. 1977. Current-voltage curve of sodium channels and concentration dependence of sodium permeability in frog skin.J. Physiol. (London) 267:137

    Google Scholar 

  • Grinstein, S., Erlij, D. 1978. Intracellular calcium and the regulation of sodium transport in the frog skin.Proc. R. Soc. London B. 202:353

    Google Scholar 

  • Handler, J.S., Preston, A.S., Orloff, J. 1972. Effect of ADH, aldosterone, ouabain, and amiloride on toad bladder epithelial cells.Am. J. Physiol. 222:1071

    Google Scholar 

  • Herrera, F.C. 1966. Action of ouabain on sodium transport in toad urinary bladder.Am. J. Physiol. 210:980

    Google Scholar 

  • Higgins, J.T., Jr., Cesaro, L., Gebler, B., Frömter, E. 1975. Electrical properties of amphibian urinary bladder epithelia: I. Inverse relationship between potential difference and resistance in tightly mounted preparations.Pfluegers Arch. 358:41

    Google Scholar 

  • Hong, C.D., Essig, A. 1976. Effects of 2-deoxy-d-glucose, amiloride, vasopressin, and ouabain on active conductance andE Na in the toad bladder.J. Membrane Biol. 28:121

    Google Scholar 

  • Huf, E.G. 1935. Versuche über den Zusammenhang zwischen Stoffwechsel, Potentialbildung und Funktion der Froschhaut.Pfluegers Arch. 235:655

    Google Scholar 

  • Janáček, K. 1963. A transient electrophysiological phenomenon in frog skin.Physiol. Bohemoslovenica 12:349

    Google Scholar 

  • Kedem, O., Katchalsky, A. 1963. Permeability of composite membranes: III. Series array of elements.Trans. Faraday Soc. 59:1941

    Google Scholar 

  • Kidder, G.W., Rehm, W.S. 1970. A model for the long timeconstant transient voltage response to current in epithelial tissues.Biophys. J. 10:215

    Google Scholar 

  • Koefoed-Johnsen, V., Ussing, H.H. 1958. The nature of the frog skin potential.Acta Physiol. Scand. 42:298

    Google Scholar 

  • Kortüm, G. 1965. Treatise on Electrochemistry. Elsevier, Amsterdam

    Google Scholar 

  • Leaf, A. 1960. Some actions of neurohypophyseal hormones on a living membrane.J. Gen. Physiol. 43:175

    Google Scholar 

  • Leaf, A. 1965. Transepithelial transport and its hormonal control in toad bladder.Ergeb. Physiol. 56:215

    Google Scholar 

  • Leaf, A., Anderson, J., Page, L.B. 1958. Active sodium transport by the isolated toad bladder.J. Gen. Physiol. 44:657

    Google Scholar 

  • Leblanc, G., Morel, F. 1975. Na and K movements across the membranes of frog skin associated with transient current changesPfluegers Arch 358:159

    Google Scholar 

  • Lewis, S.A., Diamond, J.M. 1976. Na+ transport by rabbit urinary bladder, a tight epithelium.J. Membrane Biol. 28:1

    Google Scholar 

  • Macknight, A.D.C. 1977. Contribution of mucosal chloride to chloride in toad bladder epithelial cells.J. Membrane Biol. 36:55

    Google Scholar 

  • Macknight, A.D.C., Civan, M.M., Leaf, A. 1975. The sodium transport pool in toad urinary bladder epithelial cells.J. Membrane Biol. 20:365

    Google Scholar 

  • Macknight, A.D.C., Leaf, A., Civan, M.M. 1970. Vasopressin: Evidence for the cellular site of the induced permeability change.Biochim. Biophys. Acta 222:560

    Google Scholar 

  • Macknight, A.D.C., Leaf, A., Civan, M.M. 1971. Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells.J. Membrane Biol. 6:127

    Google Scholar 

  • Matteucci, C., Cima, A. 1845. Mémoire sur l'endosmose.Ann. Chim. Phys. 13:63

    Google Scholar 

  • Morel, F., Leblanc, G. 1975. Transient current changes and Na compartmentalization in frog skin epithelium.Pfluegers Arch. 358:135

    Google Scholar 

  • Reid, E.W. 1890. Osmosis experiments with living and dead membranes.J. Physiol. (London) 11:312

    Google Scholar 

  • Reuss, L., Finn, A.L. 1975. Effects of changes in the composition of the mucosal solution on the electrical properties of the toad urinary bladder epithelium.J. Membrane Biol. 20:191

    Google Scholar 

  • Reuss, L., Finn, A.L. 1977. Mechanisms of voltage transients during current clamp inNecturus gallbladder.J. Membrane Biol. 37:299

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976a. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: I. Effects of different medium potassium concentrations on electrical parameters.J. Membrane Biol. 26:217

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976b. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder: II. Effects of different medium potassium concentrations on epithelial cell composition.J. Membrane Biol. 26:239

    Google Scholar 

  • Robinson, B.A., Macknight, A.D.C. 1976c. Relationships between serosal medium potassium concentration and sodium transport in toad urinary bladder. III. Exchangeability of epithelial cellular potassium.J. Membrane Biol. 26:269

    Google Scholar 

  • Saito, T., Essig, A. 1973. Effect of aldosterone on active and passive conductance andE Na in the toad bladder.J. Membrane Biol. 13:1

    Google Scholar 

  • Salako, L.A., Smith, A.J. 1970a. Effects of amiloride on active sodium transport by the isolated frog skin: Evidence concerning site of action.Br. J. Pharmacol. 38:702

    Google Scholar 

  • Salako, L.A., Smith, A.J. 1970b. Changes in sodium pool and kinetics of sodium transport in frog skin produced by amiloride.Br. J. Pharmacol. 39:99

    Google Scholar 

  • Schwan, H.P. 1957. Electrical properties of tissue and cell suspensions.In: Advances in Biological and Medical Physics.5: J.J. Lawrence and C.A. Tobias, editors. Vol 5, pp. 147–209 Academic Press, New York

    Google Scholar 

  • Tercafs, R.R., Schoffeniels, E. 1961. Différence de potentiel et courant électrique au niveau de la peau de grenouille isolée.Arch. Int. Physiol. Biochem. 69:459

    Google Scholar 

  • Turnheim, K., Frizzell, R.A., Schultz, S.G. 1978. Interaction between cell sodium and amiloride-sensitive sodium entry in rabbit colon.J. Membrane Biol. 39:233

    Google Scholar 

  • Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium.Acta Physiol. Scand. 61:484

    Google Scholar 

  • Yonath, J., Civan, M.M. 1971. Determination of the driving force of the Na+ pump in toad bladder by means of vasopressin.J. Membrane Biol. 5:366

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, F.C., Rosowski, J.J., Peterson, K. et al. Relationship of transient electrical properties to active sodium transport by toad urinary bladder. J. Membrain Biol. 52, 25–35 (1980). https://doi.org/10.1007/BF01869003

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01869003

Keywords

Navigation