Skip to main content
Log in

Action of insulin and cell calcium: Effect of ionophore A23187

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

We have measured the effects of the carboxylic Ca++ ionophore A23187 on muscle tension, resting potential and 3-O-methylglucose efflux. The ionophore produces an increase in tension that is dependent on external Ca++ concentration since (a) the contracture was blocked by removing external Ca++ and (b) its size was increased by raising outside Ca++. Neither resting potential nor resting and insulin-stimulated sugar efflux were modified by the ionophore. These data imply that the action of insulin is not mediated by increasing cytoplasmic [Ca++]. Additional support for this conclusion was obtained by testing the effects of caffeine on sugar efflux. This agent, which releases Ca++ from the reticulum, did not increase resting sugar efflux and inhibited the insulin-stimulated efflux. Incubation in solutions containing butyrated derivatives of cyclic AMP or cyclic GMP plus theophylline did not modify the effects of insulin on sugar efflux. Evidence suggesting that our experimental conditions increased the cytoplasmic cyclic AMP activity was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armstrong, C.M., Bezanilla, F.M., Horowicz, P. 1972. Twitches in the presence of ethylene glycol bis (β-aminoethyl ether)-N′,N′-tetraecetil acid.Biochim. Biophys. Acta 267:605

    PubMed  Google Scholar 

  • Ball, E.G., Jungas, R.L. 1964. Some effects of hormones on the metabolism of adipose tissue.Recent Prog. in Horm. Res. 20:183

    Google Scholar 

  • Bonting, S.L., Simon, K.A., Hawkins, N.M. 1961. Studies on sodium-potassium activated adenosine triphosphatase.Arch. Biochem. Biophys. 95:416

    PubMed  Google Scholar 

  • Case, G.D., VanderKooi, J.M., Scarpa, A. 1974. Physical properties of biological membranes determined by the fluorescence of the calcium ionophore A23187.Arch. Biochem. Biophys. 162:174

    PubMed  Google Scholar 

  • Chambaut, A., Eboué-Bonis, D., Hanoune, J., Clauser, H. 1969. Antagonistic action between dibutyryl adenosine-3′–5′-cyclic monophosphate and insulin on the metabolism of the surviving rat diaphragm.Biochem. Biophys. Res. Commun. 34:283

    PubMed  Google Scholar 

  • Clausen, T., Elbrink, J., Dahl-Hansen, A.B. 1975. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. IX. The role of cellular calcium in the activation of the glucose transport system in rat soleus muscle.Biochem. Biophys. Acta 375:292

    PubMed  Google Scholar 

  • Danforth, W.H., Helmereich, E., Cori, C. 1962. The effect of contraction and of epinephrine on the phosphorylase activity of frog sartorius muscle.Proc. Nat. Acad. Sci. 48:1191

    PubMed  Google Scholar 

  • Devore, D.I., Nastuk, W.L. 1975. Effects of „calcium ionophore” X537A on frog muscle.Nature (London) 253:644

    Google Scholar 

  • Elbrink, J., Bihler, I. 1975. Membrane transport; its relation to cellular metabolic rates.Science 188:1177

    PubMed  Google Scholar 

  • Exton, J.H., Lewis, S.N., Ho, R.J., Robison, G.A., Park, C.R. 1971. The role of cyclic AMP in the interaction of glucagon and insulin in the control of liver metabolism.Ann. N. Y. Acad. Sci. 185:85

    PubMed  Google Scholar 

  • Goldberg, N., Villar-Palasi, C., Sasko, H., Larner, J. 1967. Effects of insulin treatment on muscle 3′5′ cyclic adenylate levelsin vivo andin vitro.Biochim. Biophys. Acta 148:665

    Google Scholar 

  • Gourley, D.R.H. 1965. Effects of insulin on potassium exchange in normal and ouabaintreated skeletal muscle.J. Pharmacol. Exp. Ther. 148:339

    PubMed  Google Scholar 

  • Grinstein, S., Erlij, D. 1974. Unmasking of latent sodium pump sites in frog muscle by insulin.Nature (London) 251:57

    Google Scholar 

  • Hainaut, K., Desmedt, J.E. 1974. Calcium ionophore A23187 potentiates twitch and intracellular Ca++ release in single muscle fibres.Nature (London) 252:407

    Google Scholar 

  • Harris, E.J. 1963. Distribution and movement of muscle chloride.J. Physiol. (London) 166:87

    Google Scholar 

  • Hellam, D.C., Podolsky, R.J. 1968. Force measurements in skinned muscle fibres.J. Physiol. (London) 200:807

    Google Scholar 

  • Hollenberg, M.D., Cuatrecasas, P. 1975. Insulin: interaction with membrane receptors and relationship to cyclic purine nucleotides and cell growth.Fed. Proc. 34:1556

    PubMed  Google Scholar 

  • Holloszy, J.O., Narahara, H.T. 1967. Enhanced permeability to sugar associated with muscle contraction. Studies of the role of Ca++.J. Gen. Physiol. 50:551

    Article  PubMed  Google Scholar 

  • Illiano, G., Tell, G.P.E., Siegel, M.I., Cuatrecasas, P. 1973. Guanosine 3′∶5′ cyclic monophosphate and the action of insulin and acetylcholine.Proc. Nat. Acad. Sci. USA 70:2443

    PubMed  Google Scholar 

  • Kaukel, E., Mudhenk, K., Hinz, H. 1972. N6 Monobutyryladenosine 3′∶5′ monophosphate in Hela as the biologically active derivative of dibutyryladenosine 3′∶5′ monophosphate 53 cells.Eur. J. Biochem. 27:197

    PubMed  Google Scholar 

  • Keely, S.L., Corbin, J.D., Park, C.R. 1975. Regulation of adenosine 3′–5′ monophosphate dependent protein kinase regulation of the heart enzyme by epinephrine, glucagon, insulin and 1-methyl-3-isobutylxanthine.J. Biol. Chem. 250:4832

    PubMed  Google Scholar 

  • Kipnis, D.M., Noall, M.W. 1958. Stimulation of aminoacid transport by insulin in the isolated rat diaphragm.Biochim. Biophys. Acta 28:226

    PubMed  Google Scholar 

  • Kissebah, A.H., Hope-Gill, H., Vydelingum, N., Tullock, B.R., Clarke, P.V., Fraser, T.R. 1975. Model of insulin action.Lancet 7899:144

    Google Scholar 

  • Kohn, P.G., Clausen, T. 1971. The relationship between the transport of glucose and cations across cell membranes in isolated tissues.Biochim. Biophys. Acta 225:277

    PubMed  Google Scholar 

  • Larner, J., Villar-Palasi, C., Goldberg, N.D., Bishop, J.S., Huijing, F., Wenger, J.I., Sasko, H., Brown, N.B. 1968. Hormonal and non-hormonal control of glycogen-synthesis.In: Control of glycogen Metabolism. W.J. Whelan, editor. P. 1. Academic Press, New York

    Google Scholar 

  • Levine, R., Goldstein, M., Klein, S., Huddleston, B. 1949. The action of insulin on the distribution of galactose in eviscerated nephrectomized dogs.J. Biol. Chem. 179:985

    Google Scholar 

  • Lostroh, A.J., Krahl, M.E. 1973. Insulin action: accumulation in vitro of Mg2+ and K+ in rat uterus: ion pump activity.Biochim. Biophys. Acta 291:260

    PubMed  Google Scholar 

  • McLaughlin, S., Eisenberg, M. 1975. Antibiotics and membrane biology.Annu. Rev. Biophys. Bioeng. 4:335

    PubMed  Google Scholar 

  • McAfee, D.A., Greengard, P. 1971. Adenosine 3′∶5′-monophosphate in nervous tissue increase associated with synaptic transmission.Science 171:1156

    PubMed  Google Scholar 

  • Narahara, H.T., Holloszy, J.O. 1974. The actions of insulin, trypsin, and electrical stimulation on amino acid transport in muscle.J. Biol. Chem. 249:5435

    PubMed  Google Scholar 

  • Neelon, F.A., Birch, B.M. 1973. Cyclic adenosine 3′∶5′ monophosphate-dependent protein kinase. Interaction with butyrylated analogues of cyclic adenosine 3′ 5′ monophosphate.J. Biol. Chem. 248:8361

    Google Scholar 

  • Ong, S., Whitley, T., Stowe, N., Steiner, A.L. 1975. Immunohistochemical localization of 3′5 cAMP and 3′5′ cGMP in rat liver, intestine and testis.Proc. Nat. Acad. Sci. USA 72:2022

    PubMed  Google Scholar 

  • Pressman, B.C. 1972. Carboxylic ionophores as mobile carriers for divalent ions.In: The role of Membranes in Metabolic Regulation. M.A. Mehlman and R.W. Hanson, editors. Pp. 149–164. Academic Press, New York

    Google Scholar 

  • Reed, P.W. 1972. A23187 A divalent cation ionophore.Fed. Proc. 31:432

    Google Scholar 

  • Reed, P.W., Lardy, H.A. 1972. Antibiotic A23187 as a probe for the study of calcium and magnesium function in biological systems.In: the Role of Membranes in Metabolic Regulation. M.A. Mehlman and R.W. Hanson, editors. Pp. 111–131. Academic Press, New York

    Google Scholar 

  • Stone, T.W., Taylor, D.A., Bloom, F.E. 1975. Cyclic AMP and cyclic GMP may mediate opposite neuronal responses in the rat cerebral cortex.Science 187:845

    PubMed  Google Scholar 

  • Swislocki, N.I. 1970. Decomposition of dibutyryl cyclic AMP in aqueous buffers.Anal. Biochem. 38:260

    PubMed  Google Scholar 

  • Triggle, C.R., Grant, W.F., Triggle, D.D.J. 1975. Intestinal smooth muscle contraction and the effects of cadmium and A23187.J. Pharmacol. Exp. Ther. 194:182

    PubMed  Google Scholar 

  • Weber, A., Herz, R. 1968. The relationship between contractures of intact muscle and the effect of caffeine on reticulum.J. Gen. Physiol. 52:750

    PubMed  Google Scholar 

  • Wool, I.G., Castles, J.J., Leader, D.P., Fox, A. 1972. Insulin and the functions of muscle ribosomes.In: Handbook of Physiology Section 7, Endocrinology; Vol. I, Endocrine Pancreas. pp. 385–394. American Physiological Society, Washington

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinstein, S., Erlij, D. Action of insulin and cell calcium: Effect of ionophore A23187. J. Membrain Biol. 29, 313–328 (1976). https://doi.org/10.1007/BF01868968

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868968

Keywords

Navigation