Skip to main content
Log in

Calcium-stimulated respiration and active calcium transport in the isolated chick chorioallantoic membrane

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Calcium markedly stimulates the respiration of the isolated chick chorioallantoic membrane. This stimulation of oxygen uptake appears to be closely associated with the membrane's active transcellular calcium transport mechanism. In the presence of 1mm Ca++ the rate of uptake increases from 9.3±0.15 to 13.0±0.2 μliters O2/cm2/hr, an increase of about 40%. The calcium-stimulated respiration is specific for the ectodermal layer of cells, the known location of the calcium transport mechanism, and only occurs when the calcium transport mechanism is operative. Sr++ and Mn++ are transported by the tissue at a lower rate than Ca++ and cause a smaller stimulation of oxygen consumption. Mg++ and La3+ have no effect on tissue respiration. In the presence of Ca++, the organic mercurialp-chloromercuribenzene sulfonate (PCMBS) inhibits calcium transport and specifically decreases the oxygen uptake of the ectoderm to a rate identical to that obtained in a calcium-free medium. Stripping the inner shell membrane away from the chorioallantoic membrane mimics these effects. The specificity and locus of action of these two inhibitors suggest that a vital component of the active transcellular calcium transport mechanism resides on or near the outer surface of the plasma membrane of the ectodermal cells and that sulfhydryl groups are important to the normal function of this component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, T. H., Norman, A. W. 1970. Studies on the mechanism of action of calciferol. I. Basic parameters of vitamin D mediated calcium transport.J. Biol. Chem. 245:4421.

    PubMed  Google Scholar 

  2. Borle, A. B. 1967. Membrane transfer of calcium.Clin. Orthop. Related Res. 52:267.

    Google Scholar 

  3. Bygrave, F. L. 1966. The effect of calcium ions on the glycolytic activity of Ehrlich ascites-tumour cells.Biochem. J. 101:480.

    PubMed  Google Scholar 

  4. Chance, B. 1965. The energy linked reaction of calcium with mitochondria.J. Biol. Chem. 240:2729.

    PubMed  Google Scholar 

  5. Chappell, J. B. 1964. The oxidation of citrate, isocitrate and cis-aconitate by isolated mitochondria.Biochem. J. 90:225.

    PubMed  Google Scholar 

  6. Cohn, D. V., Griffith, F. D., Levy, R. 1965. Parathyroid extract-induced changes in the oxidation of citrate, succinate and other organic acids by liver.Endocrin. 77:683.

    Google Scholar 

  7. Coleman, J. R., De Witt, S. M., Batt, P., Terepka, A. R. 1970. Electron probe analysis of calcium distribution during active transport in chick chorioallantoic membrane.Exp. Cell Res. 63:216.

    PubMed  Google Scholar 

  8. Coleman, J. R., Terepka, A. R. 1972. Fine structural changes associated with the onset of calcium, sodium and water transport by the chick chorioallantoic membrane.J. Membrane Biol. 7:111.

    Google Scholar 

  9. Cutting, M., McCance, R. A. 1947. The effect of calcium ions on the respiration of kidney slices of newborn and mature rats.J. Physiol. 106:405.

    Google Scholar 

  10. Epstein, F. H., Whittam, R. 1966. The mode of inhibition by calcium of cell-membrane adenosine-triphosphate activity.Biochem. J. 99:232.

    PubMed  Google Scholar 

  11. Garrison, J. C., Ford, G. D. 1970. An improved method for measurement of oxygen consumption at constant oxygen tension.J. Appl. Physiol. 28:685.

    Google Scholar 

  12. Hamilton, H. L. 1952. Lillie's Development of the Chick. Holt, Rinehart and Winston, Inc., New York.

    Google Scholar 

  13. Hasselbach, W., Seraydarian, K. 1966. The role of sulfhydryl groups in calcium transport through the sarcoplasmic membranes of skeletal muscle.Biochem. Z. 345:159.

    Google Scholar 

  14. Hays, R. M., Singer, B., Malamed, S. 1965. The effect of calcium withdrawal on the structure and function of the toad bladder.J. Cell Biol. 25:195 (No. 3, pt. 2).

    PubMed  Google Scholar 

  15. Howard, J. E. 1957. Calcium metabolism, bones and calcium homeostasis. A review of certain current concepts.J. Clin. Endocrin. Metab. 17:1105.

    Google Scholar 

  16. Judah, J. D., Ahmed, K. 1964. The biochemistry of sodium transport.Biol. Rev. 39:160.

    PubMed  Google Scholar 

  17. Kepes, A. 1964. The place of permeases in cellular organization.In: The Cellular Function of Membrane Transport. J. F. Hoffman, editor. p. 155. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  18. Keynes, R. D. 1969. From frog skin to sheep rumen: A survey of transport of salts and water across multicellular structures.Quart. Rev. Biophys. 2:177.

    Google Scholar 

  19. Kimmich, G. A., Rasmussen, H. 1969. Regulation of pyruvate carboxylase activity by calcium in intact rat liver mitochondria.J. Biol. Chem. 244:190.

    PubMed  Google Scholar 

  20. Klingenburg, M. 1965. Control characteristics of the adenine nucleotide system.In: Control of Energy Metabolism. B. Chance, R. W. Estabrook, and J. R. Wiliamson, editors. p. 149. Academic Press Inc., New York.

    Google Scholar 

  21. Krebs, H. A. 1950. Body size and tissue respiration.Biochim. Biophys. Acta 4:249.

    PubMed  Google Scholar 

  22. Leaf, A., Page, L. B., Anderson, J. 1959. Respiration and active sodium transport of isolated toad bladder.J. Biol. Chem. 234:1625.

    PubMed  Google Scholar 

  23. Leaf, A., Renshaw, A. 1957. Ion transport and respiration of isolated frog skin.Biochem. J. 65:82.

    PubMed  Google Scholar 

  24. Loewenstein, W. R. 1967. Cell surface membranes in close contact. Role of calcium and magnesium ions.J. Colloid Interface Sci. 25:34.

    PubMed  Google Scholar 

  25. Manery, J. F. 1966. Effects of Ca ions on membranes.Fed. Proc. 25:1804.

    PubMed  Google Scholar 

  26. Martin, D. W., DeLuca, H. F. 1969. Influence of sodium on calcium transport by the rat small intestine.Amer. J. Physiol. 216:1351.

    PubMed  Google Scholar 

  27. Martin, D. W., Diamond, J. M. 1966. Energetics of coupled active transport of sodium and chloride.J. Gen. Physiol. 50:295.

    PubMed  Google Scholar 

  28. Mela, L., Chance, B. 1969. Calcium carrier and the “high affinity calcium binding site” in mitochondria.Biochem. Biophys. Res. Commun. 35:556.

    PubMed  Google Scholar 

  29. Moriarty, C. M., Terepka, A. R. 1969. Calcium transport by the isolated chick chorio-allantoic membrane.Arch. Biochem. Biophys. 135:160.

    PubMed  Google Scholar 

  30. Nellans, H., Finn, A. 1970. Energetics of sodium transport in the toad bladder.Biophys. Soc. (Abstract) 10:196a.

    Google Scholar 

  31. Pressman, B. C. 1970. Energy-linked transport in mitochondria.In: Membranes of Mitochondria and Chloroplasts. E. Racker, editor. p. 213. Van Nostrand, Reinhold, New York.

    Google Scholar 

  32. Rasmussen, H. 1970. Cell communication, calcium ion, and cyclic adenosine monophosphate.Science 170:404.

    PubMed  Google Scholar 

  33. Schraer, R., Schraer, H. 1970. The avian shell gland: A study in calcium translocation.In: Biological Calcification. H. Schraer, editor. p. 347. Appleton-Century-Crofts, New York.

    Google Scholar 

  34. Stewart, M. E., Terepka, A. R. 1969. Transport functions of the chick chorioallantoic membrane. I. Normal histology and evidence for active electrolyte transport from the allantoic fluid,in vivo.Exp. Cell Res. 58:93.

    PubMed  Google Scholar 

  35. Terepka, A. R. 1963. Structure and calcification in avian egg shell.Exp. Cell Res. 30:171.

    PubMed  Google Scholar 

  36. Terepka, A. R., Stewart, M. E., Merkel, N. 1969. Transport functions of the chick chorio-allantoic membrane. II. Active calcium transport,in vitro.Exp. Cell Res. 58:107.

    PubMed  Google Scholar 

  37. Thimmappayya, B., Reddy, R. R., Bhargava, P. M. 1970. Preparation of kidney cell suspensions and respiration of kidney and liver cell suspensions.Exp. Cell Res. 63:333.

    PubMed  Google Scholar 

  38. Van Steveninck, J., Weed, R. I., Rothstein, A. 1965. Localization of erythrocyte membrane sulfhydryl groups essential for glucose transport.J. Gen. Physiol. 48:617.

    PubMed  Google Scholar 

  39. Vincenzi, F. F., Schatzmann, H. J. 1967. Some properties of Ca-activated ATPase in human red cell membranes.Helv. Physiol. Acta 25:CR 233.

    Google Scholar 

  40. Wasserman, R. H., Kallfelz, F. A. 1970. Transport of calcium across biological membranes.In: Biological Calcification. H. Schraer, editor. p. 313. Appleton-Century-Crofts, New York.

    Google Scholar 

  41. Whittam, R., Ager, M. E. 1965. The connection between active cation transport and metabolism in erythrocytes.Biochem. J. 97:214.

    Google Scholar 

  42. Whittam, R., Wheeler, K. P. 1970. Transport across cell membranes.Annu. Rev. Physiol. 32:21.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrison, J.C., Terepka, A.R. Calcium-stimulated respiration and active calcium transport in the isolated chick chorioallantoic membrane. J. Membrain Biol. 7, 128–145 (1972). https://doi.org/10.1007/BF01867912

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01867912

Keywords

Navigation