Skip to main content
Log in

The inhibition of cancer cell stickiness, a model for investigation of platelet aggregation inhibitors in vivo

Effect of the Sulfonyl Urea Derivatives, Glibenclamide, Gliclazide, and HB 180, as Well as the Carboxylic Acid Derivative, Meglitinide

  • Original Contributions
  • Published:
Research in Experimental Medicine

Summary

Employing the test model which we developed for the investigation of platelet adhesiveness and aggregation in vivo, experiments demonstrated that the sulfonyl urea derivatives, glibenclamide, gliclazide, and HB 180, as well as the carboxylic acid derivative, meglitinide, are able to inhibit, in a dosedependent relationship, the adherence of i.v. injected Walker-256-carcinosarcoma cells to the vascular endothelium of the rat mesentery, as well as to reduce significantly the rate of instantly occurring terminal tumor cell embolism of the lung. Since venous blood platelet count in surviving animals is inversely proportional to the number of the tumor cells which adhere to the vascular endothelium, one can deduce that tumor cell embolism is an immediate result of a massively occurring disseminated intravascular coagulation (DIC) which may be induced by i.v. injection of thromboplastic active carcinosarcoma cells and leads primarily to a drastic platelet count reduction. All four substances inhibit this platelet count reduction as well as the directly correlated tumor cell embolism mortality rate in a linear dose-dependent fashion. Their action can therefore be explained as being mediated via an inhibition of platelet adhesion and aggregation to the circulating tumor cells.

Our proof of platelet aggregation in vivo correlates with the results obtained by Klaff et al. (1979), as far as a normalization of the pathologically increased platelet aggregation tendency in vitro in diabetics following 4–6 weeks of therapy with the sulfonyl urea derivatives glibenclamide and gliclazide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrus JL, Ambrus CM, Gastpar H (1978) Study of platelet aggregation in vivo. VI. Effect of a pyrimido-pyrimidine derivative (RA 233) on tumor cell metastasis. J Med 9:183

    PubMed  Google Scholar 

  • Burrows AW, Chavin SI, Hockaday TDR (1978) Plasma-thromboglobulin concentration in diabetes mellitus. Lancet I:235

    Google Scholar 

  • Carreras LO, Chamone DAF, Klerckx P, Vermylen J (1980) Decreased prostacyclin (PGI2) in diabetic rats. Stimulation of PGI2 release in normal and diabetic rats by the antithrombotic compound BAY g 6575. Thromb Res 19:663

    PubMed  Google Scholar 

  • Colwell JA, Chambers A, Laimins M (1975) Inhibition of labile aggregation-stimulating substance (LASS) in platelet aggregation in diabetes mellitus. Diabetes 24:684

    PubMed  Google Scholar 

  • Colwell JA, Halushka PV, Sarji K, Levine J, Sagel J, Nair RMG (1976) Altered platelet function in diabetes mellitus. Diabetes [Suppl 2] 25:826

    Google Scholar 

  • Colwell JA, Sagel J, Crook L, Chambers A, Laimins M (1977) Correlation of platelet aggregation, plasma factor activity, and megathrombocytes in diabetic subjects with and without vascular disease. Metabolism 26:279

    PubMed  Google Scholar 

  • Colwell JA, Halushka PV (1980) Platelet function in diabetes mellitus. Br J Haematol 44:521

    PubMed  Google Scholar 

  • Coman DR (1961) Adhesiveness and stickiness: Two independent properties of cell surface. Cancer Res 21:1436

    PubMed  Google Scholar 

  • Finney DJ (1952) Probit analysis, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Ferguson JC, Mackay N, Philip JAD, Sumner DJ (1975) Determination of platelet and fibrinogen half-life time with (75Se) selenomethionine: Studies in normal and in diabetic subjects. Clin Sci Mol Med 49:115

    PubMed  Google Scholar 

  • Fleischman AI, Beirenbaum ML, Stier A, Somol H, Watson PB (1976) In vitro platelet function in diabetes mellitus. Thromb Res 9:467

    PubMed  Google Scholar 

  • Garg SK, Lackner H, Karpatkin S (1972) The increased percentage of megathrombocytes in various clinical disorders. Ann Int Med 77:361

    PubMed  Google Scholar 

  • Gasic G, Gasic T, Stewart CC (1968) Antimetastatic effects associated with platelet reduction. Proc Nat Acad Sci USA 61:46

    PubMed  Google Scholar 

  • Gasic G, Gasic T, Gelantini N, Johnson T, Murphy S (1973) Platelet tumor cell interaction in mice. The role of platelets in the spread of malignant disease. Int J Cancer 11:704

    PubMed  Google Scholar 

  • Gastpar H (1967) Diskussionsbemerkung. Thromb Diath Haemorrh Suppl 24:52

    Google Scholar 

  • Gastpar H (1970) Stickiness of platelets and tumor cells influenced by drugs. Thromb Diath Haemorrh Suppl 42:291

    Google Scholar 

  • Gastpar H (1972) Inhibition of cancer cell stickiness by anticoagulants, fibrinolytic drugs and pyrimido-pyrimidine compounds. Hematol Rev 3:1

    Google Scholar 

  • Gastpar H (1973a) Die Hemmung der „Cancer Cell Stickiness“ durch Pyrimido-Pyrimidin-Derivate. Thromb Diath Haemorrh Suppl 55:253

    PubMed  Google Scholar 

  • Gastpar H (1973b) Die Hemmung der „Cancer Cell Stickiness“ durch Bencyclan-hydrogenfumarat (Fludilat). Fortschr Med 91:1322

    PubMed  Google Scholar 

  • Gastpar H (1974) The inhibition of cancer cell stickiness by the methylxanthine derivative pentoxifylline (BL 191). Thrombos Res 5:277

    Google Scholar 

  • Gastpar H, Ambrus JL, Thurber LE (1977) Study of platelet aggregation in vivo. II. Effect of bencyclane on circulating metastatic tumor cellls. J Med 8:53

    PubMed  Google Scholar 

  • Gastpar H, Ambrus JL, Ambrus CM (1978) Study of platelet aggregation in vivo. VII. Effect of pentoxifylline on circulating tumor cells. J Med 9:265

    PubMed  Google Scholar 

  • Gastpar H (1978) Die Hemmung der „Cancer Cell Stickiness“, ein Modell zur Prüfung von Thrombozytenaggregationshemmern in vivo. IV. Die Wirkung von Sulfinpyrazon. Fortschr Med 96:1823

    PubMed  Google Scholar 

  • Gastpar H (1981) New aspects of the pathogenesis of atherosclerosis: Possible approaches to prevention and treatment. Curr Med Res Op 7:142

    Google Scholar 

  • Gastpar H, Weissgerber PW (1981) The inhibition of cancer cell stickiness: a model for investigation of platelet aggregation inhibitors in vivo. V. The effect of penbutolol. J Med 12:1

    PubMed  Google Scholar 

  • Halushka PV, Lurie D, Colwell JA (1977) Increased synthesis of prostaglandin-E-like material by platelets from patients with diabetes mellitus. N Engl J Med 297:1306

    PubMed  Google Scholar 

  • Halushka PV, Rogers RC, Loadholt CB, Colwell JA (1981) Increased platelet thromboxane synthesis in diabetes mellitus. J Lab Clin Med 97:87

    PubMed  Google Scholar 

  • Harrison HE, Reece AH, Johnson M (1978) Decreased vascular prostacyclin in experimental diabetes. Life Sci 23:351

    PubMed  Google Scholar 

  • Hassanein AA, El-Garf TA, El-Baz Z (1972) Platelet aggregation in diabetes mellitus and the effect of insulin in vivo on aggregation. Thromb Diath Haemorrh 27:114

    PubMed  Google Scholar 

  • Heath H, Brigden WD, Canever JV, Pollok J, Hunter PR, Kelsey J, Bloom A (1971) Platelet adhesiveness and aggregation in relation to diabetic retinopathy. Diabetologia 7:308

    PubMed  Google Scholar 

  • Hellem AJ (1971) Adenosine diphosphate induced platelet adhesiveness in diabetes mellitus with complications. Acta Med Scand 190:291

    PubMed  Google Scholar 

  • Hilgard P (1973) The role of blood platelets in experimental metastases. Br J Cancer 28:429

    PubMed  Google Scholar 

  • King JB, Kalk WJ, Vinik AI, Jackson WPU, Bracher M, Jacobs P (1977) An evaluation of the effects of some sulphonylureas on platelet function. S Afr Med J 51:124

    PubMed  Google Scholar 

  • Klaff LJ, Vinik AI, Jackson WPU, Malan E, Kernoff L, Jacobs P (1979) Effects of the sulphonylurea drugs gliclazide and glibenclamide on blood glucose control and platelet function. S Afr Med J 56:247

    PubMed  Google Scholar 

  • Koike A (1964) Mechanisms of blood-borne metastases. I. Some factors affecting lodgment and growth of tumor cells in the lungs. Cancer 17:450

    PubMed  Google Scholar 

  • Kwaan HC, Colwell JA, Cruz S, Suwanwela N, Dobbie JG (1972) Increased platelet aggregation in diabetes mellitus. J Lab Clin Med 80:236

    PubMed  Google Scholar 

  • Leone G, Bizzi B, Accorra F, Boni P (1974) Functional aspects of platelets in diabetes mellitus. In: Caprino L, Rossi FC (eds) Platelet aggregation and drugs. Academic Press, New York, p 49

    Google Scholar 

  • Mayne B, Weaver JA (1970) Platelet adhesiveness, platelet fibrinogen, and factor VIII levels in diabetes mellitus. Diabetologia 6:436

    PubMed  Google Scholar 

  • McMillan DE (1975) Deterioration of the microcirculation in diabetes. Diabetes 24:944

    PubMed  Google Scholar 

  • Preston FE, Ward JD, Marcola BH, Porter NR, Temperley WR (1978) Elevatedβ-thromboglobulin levels and circulating platelet aggregates in diabetic microangiopathy. Lancet I:238

    Google Scholar 

  • Rathbone RL, Ardlie NG, Schwartz CJ (1970) Platelet aggregation and thrombus formation in diabetes mellitus: An in vitro study. Pathology 2:307

    PubMed  Google Scholar 

  • Ross R, Glomset JA (1975) The pathogenesis of atherosclerosis. N Engl J Med 295:420

    Google Scholar 

  • Roth J, Prout TE, Goldfine ID, Wolfe SM, Muenzer J, Grauer LE, Marcus ML (1971) Sulfonylureas: Effects in vivo and in vitro. Ann Int Med 75:607

    PubMed  Google Scholar 

  • Rubinjoni Z, Turk Z, Coce F, Mustovic D, Maitre D, Skrabalo Z (1978) Effect on platelet adhesiveness in diabetics after long-term treatment with a new oral hypoglycaemic agent, gliclazide. Curr Med Res Op 5:625

    Google Scholar 

  • Sagel J, Colwell JA, Crook L, Laimins M (1975) Increased platelet aggregation in early diabetes mellitus. Ann Int Med 82:733

    PubMed  Google Scholar 

  • Shaw S, Pegrum GD, Wolf S, Ashton WL (1967) Platelet adhesiveness in diabetes mellitus. J Clin Pathol 20:845

    PubMed  Google Scholar 

  • Silberbauer K, Schernthaner G, Sinzinger H, Piza-Katzer H, Winter M (1979) Decreased vascular prostacyclin in juvenile-onset diabetes. N Engl J Med 300:366

    Google Scholar 

  • Sträuli P (1966) Intravascular clotting and cancer localization. Thromb Diath Haemorrh Suppl 20:147

    PubMed  Google Scholar 

  • Szirtes M (1970) Platelet aggregation in diabetes mellitus. Adv Cardiol 4:179

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gastpar, H., Weissgerber, P.W., Enzmann, F. et al. The inhibition of cancer cell stickiness, a model for investigation of platelet aggregation inhibitors in vivo. Res. Exp. Med. 180, 75–84 (1982). https://doi.org/10.1007/BF01852234

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01852234

Key words

Navigation