Skip to main content
Log in

Presence of neuronal cell bodies in the sympathetic pressor areas of dorsal and ventrolateral medulla inhibiting phrenic nerve discharge in cats

  • Research Paper
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

To examine whether neuronal cell bodies (perikarya) in the pressor areas of dorsal medulla or ventrolateral medulla also modulate respiratory function, phrenic nerve activity was monitored and correlated with the pressor response in chloralose-urethane anaesthetized cats. The animals were paralyzed and artificially ventilated maintaining the end-tidal fractional concentration of CO2 at 0.04–0.05. The same pressor point in the dorsal or ventrolateral medulla was stimulated electrically (rectangular pulse of 20–200µA, 80 Hz and 0.5 ms) and then chemically (0.25–0.5 M sodium glutamate, 80–200 n1). Areas producing pressor effects in either the dorsal or ventrolateral medulla produced a current-dependent decrease of phrenic discharge. The decrease in Pna was significant when the electrical current reached 50µA or above. It occurred immediately before the onset of increase in blood pressure. Injection of glutamate to the same pressor point in either the dorsal or ventrolateral medulla produced a similar decrease in phrenic nerve activity. The results suggest that in the pressor areas of dorsal and ventrolateral medulla there are neuronal perikarya that can increase systemic arterial presssure and inhibit phrenic nerve activity. Whether the same or separate neurones are responsible for these responses is to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chai CY, Wang SC. Integration of sympathetic cardiovascular mechanisms in medulla oblongata of the cat.Am J Physiol 1968;215: 1310–1315.

    PubMed  Google Scholar 

  2. Chai CY, Lin RH, Lin AMY, Pan CM, Lee EHY, Kuo JS. Pressor responses from electrical or glutamate stimulation of the dorsal or ventrolateral medulla.Am J Physiol 1988;255: R709-R717.

    PubMed  Google Scholar 

  3. Chai CY, Lin AMY, Su CK, Hu SR, Yuan C, Kao LS, Kuo JS, Goldstein DS. Sympathoadrenal excitation and inhibition by lower brainstem stimulation in cats.J Auton Nerv Syst 1991;33: 35–46.

    PubMed  Google Scholar 

  4. Chai CY, Coexistence of multiple functions in pressor areas of the dorsal and ventrolateral medulla. Neuroscience Research, American-Chinese Joint Seminar (Taipei) 1990; 21–24.

  5. Chai CY, Wu WC, Wang HY, Su CK, Lin YF, Yen CT, Kuo JS, Wayner MJ. Coexistence of a autonomic and somatic mechanisms in the pressor areas of medulla in cats.Brain Res Bull (in press, June 1992).

  6. Su CK, Lin AMY, Lin RH, Kuo JS, Chai CY. Contribution between dorsal and ventrolateral regions of medulla oblongata in vasomotor function of cats.Brain Res Bull 1989;23: 447–456.

    PubMed  Google Scholar 

  7. Goodchild AK, Dampney RAL, Bandler R. A method for evoking physiological responses by stimulation of cell bodies, but not axons of passage, within localized regions of the central nervous system.J Neurosci Meth 1982;6: 351–363.

    Google Scholar 

  8. Lipski J, Bellingham MC, West MJ, Pilowsky P. Limitations of the technique of pressure microinjection of excitatory amino acids for evoking responses from localized regions of the CNS.J Neurosci Methods 1988;26: 169–179.

    PubMed  Google Scholar 

  9. Feldman JL, Ellenberger HH. Central coordination of respiratory and cardiovascular control in mammals.Ann Rev Physiol 1988;50: 593–606.

    Google Scholar 

  10. Baker JP, Remmers JE. Response of medullary respiratory neurons to rostral pontine stimulation.Respir Physiol 1982;50: 197–208.

    PubMed  Google Scholar 

  11. Ezure K, Manabe M, Yamada H. Distribution of medullary respiratory neurons in the rat.Brain Res 1988;455: 262–270.

    PubMed  Google Scholar 

  12. Merrill EG, Lipski J, Kubin I, Feforko L. Origin of the expiratory inhibition of nucleus tractus solitarius inspiratory neurons.Brain Res 1983;263: 43–50.

    PubMed  Google Scholar 

  13. Warner MR, Loeb JM. Beat-by-beat modulation of AV conduction I: Heart rate and respiratory influences.Am J Physiol 1986;251: H1126-H1133.

    PubMed  Google Scholar 

  14. Kollai M, Koizumi K. Patterns of single unit activity in sympathetic postganglionic nerves.J Auton Nerv Syst 1980;1: 305–312.

    PubMed  Google Scholar 

  15. McAllen RM. Location of neurons with cardiovascular and respiratory function, at the ventral surface of the cat's medulla.Neuroscience 1986;18: 43–49.

    PubMed  Google Scholar 

  16. Miura M, Onai T, Takayama K. Projections of upper structure to the spinal cardioacceleratory center in cats: an HRP study using a new microinjection method.J Auton Nerv Syst 1983;7: 119–139.

    PubMed  Google Scholar 

  17. Onai T, Miura M. Projections of supraspinal structures to phrenic motor nucleus in cats studied by a horseradish peroxidase microinjection method.J Auton Nerv Syst 1986;16: 61–77.

    PubMed  Google Scholar 

  18. Langhorst P, Scholz B, Schulz G, Lambertz M. Reticular formation of the lower brain stem. A common system for cardio-respiratory and somatomotor functions: discharge pattern of neighboring neurons influenced by cardiovascular and respiratory afferents.J Auton Nerv Syst 1983;9: 411–432.

    PubMed  Google Scholar 

  19. McCrimmon DR, Feldman JL, Speck DF. Respiratory motoneuronal activity is altered by injections of picomoles of glutamate into cat brain stem.J Neurosci 1986;6: 2384–2392.

    PubMed  Google Scholar 

  20. Hwang JC, St John WM, Bartlett D Jr. Respiratory-related hypoglossal nerve activity: influence of anesthetics.J Appl Physiol 1983;55: 785–792.

    PubMed  Google Scholar 

  21. Zar JH.Biostatistical Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1984.

    Google Scholar 

  22. Feldman JL. Neurophysiology of breathing in mammals. In: Bloom FE, ed.Handbook of Physiology, Sect 1: The Nervous System. Vol 4. Intrinsic Regulatory System of the Brain. Bethesda, MD: Am Physiol Soc, 1986; 463–524.

    Google Scholar 

  23. Lin AMY, Wang Y, Kuo JS, Chai CY. Homocysteic acid elicits pressor responses from ventrolateral medulla and dorsomedial medulla.Brain Res Bull 1989;22: 627–631.

    PubMed  Google Scholar 

  24. Lin RH, Lin AMY, Su CK, Kuo JS, Chai CY. Presence of perikarya for vasopressor actions in both the dorsal and ventrolateral regions of medulla oblongata in swine.Neurosci Res Comm 1989;5: 125–133.

    Google Scholar 

  25. Yardley CP, Andrade JM, Weaver LC. Evaluation of cardiovascular control by neurons in the dorsal medulla of rats.J Auton Nerv Syst 1989;29: 1–12.

    PubMed  Google Scholar 

  26. Bruce EN, Cherniack NS. Central chemoreceptors.J Appl Physiol 1987;62: 389–402.

    PubMed  Google Scholar 

  27. Millhorn DE, Eldridge FL. Role of ventrolateral medulla in regulation of respiratory and cardiovascular systems.J Appl Physiol 1986;61: 1249–1263.

    PubMed  Google Scholar 

  28. Eldridge FL, Kiley JP, Millhorn DE. Respiratory responses to medullary hypoxia ion changes in cats: different effects of respiratory and metabolic acidosis.J Physiol (Lond) 1985;358: 285–297.

    Google Scholar 

  29. Kiely JP, Eldridge FL, Millhorn DE. The roles of medullary extracellular and cerebrospinal fluid pH in control of respiration.Respir Physiol 1985;59: 117–130.

    PubMed  Google Scholar 

  30. Ciriello J, Caverson MM, Polosa C. Function of ventrolateral medulla in control of the circulation.Res Rev 1986;11: 359–391.

    Google Scholar 

  31. Gordon RJ. Aortic baroreceptor reflexes are mediated by NMDA receptors in caudal ventrolateral medulla.Am J Physiol 1987;252: R628-R633.

    PubMed  Google Scholar 

  32. Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, Saavedra JM, Reis DJ. Tonic vasomotor control by the rostral ventrolateral medulla; effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin.J Neurosci 1984;4: 474–494.

    PubMed  Google Scholar 

  33. Urbanski RW, Sapru HN. Evidence for sympathoexcitatory pathway from the nucleus tractus solitarius to the ventrolateral medullary pressor area.J Auton Nerv Syst 1988;23: 161–174.

    PubMed  Google Scholar 

  34. Yamada KA, Norman WP, Hamosh P, Gillis RA. Medullary ventral surface GABA receptors affect respiratory and cardiovascular function.Brain Res 1982;248: 71–78.

    PubMed  Google Scholar 

  35. Nattie EE, Mills JW, Ou LC, St John WM. Kainic acid on the rostral ventrolateral medulla inhibits phrenic output and CO2 sensitivity.J Appl Physiol 1988;65: 1525–1534.

    PubMed  Google Scholar 

  36. Nattie EE, Li A. Fluorescence location of RVLM kainate microinjections that alter the control of breathing.J Appl Physiol 1990;68: 1157–1166.

    PubMed  Google Scholar 

  37. Lowing WL, Millhorn DE, Bayliss DA, Dean JB, Trzebski A. Excitatory and inhibitory effects on respiration ofL-glutamate microinjected superficially into the ventral aspects of the medulla oblongata in cat.Brain Res 1987;435: 322–326.

    PubMed  Google Scholar 

  38. Lei L, Song G, Lu WY. Studies on the inspiratory generating effect of the dorso-medial area of nucleus facialis.Respir Physiol 1989;75: 65–74.

    PubMed  Google Scholar 

  39. Richter DW, Seller H. Baroreceptor effects on medullary respiratory neurones of the cat.Brain Res 1975;86: 168–171.

    PubMed  Google Scholar 

  40. Arata A, Onimaru H, Homma I. Respiration-related neurons in the ventral medulla of newborn ratsin vitro.Brain Res Bull 1990;24: 599–604.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, J.C., Su, C.K., Yen, C.T. et al. Presence of neuronal cell bodies in the sympathetic pressor areas of dorsal and ventrolateral medulla inhibiting phrenic nerve discharge in cats. Clinical Autonomic Research 2, 189–196 (1992). https://doi.org/10.1007/BF01818961

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01818961

Key words

Navigation