Skip to main content
Log in

Enhancement of Gustatory Neural Responses by Parasympathetic Nerve in the Frog

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The autonomic nervous system affects the gustatory responses in animals. Frog glossopharyngeal nerve (GPN) contains the parasympathetic nerve. We checked the effects of electrical stimulation (ES) of the parasympathetic nerves on the gustatory neural responses. The gustatory neural impulses of the GPNs were recorded using bipolar AgCl wires under normal blood circulation and integrated with a time constant of 1 s. Electrical stimuli were applied to the proximal side of the GPN with a pair of AgCl wires. The parasympathetic nerves of the GPN were strongly stimulated for 10 s with 6 V at 30 Hz before taste stimulation. The integrated neural responses to 0.5 M NaCl, 2.5 mM CaCl2, water, and 1 M sucrose were enhanced to 130–140% of the controls. On the other hand, the responses for 1 mM Q-HCl and 0.3 mM acetic acid were not changed by the preceding applied ES. After hexamethonium (a blocker of nicotinic ACh receptor) was intravenously injected, ES of the parasympathetic nerve did not modulate the responses for all six taste stimuli. The mechanism for enhancement of the gustatory neural responses is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akaike N, Noma A, Sato M (1976) Electrical responses of frog taste cells to chemical stimuli. J Physiol 254:87–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida TA, Rojo J, Nieto PM, Pinto FM, Hernandez M, Martin JD, Candenas ML (2004) Tachykinins and tachykinin receptors: structure and activity relationships. Curr Med Chem 11:2045–2081

    Article  CAS  PubMed  Google Scholar 

  • Beppu N, Higure Y, Mashiyama K, Ohtubo Y, Kumazawa T, Yoshii K (2012) Hypertonicity augments bullfrog taste nerve response. Pflugers Arch-Eur J Physiol 463:845–851

    Article  CAS  Google Scholar 

  • Ekström J, Ekman R, Håkanson R, Sjögren S, Sundler F (1988a) Calcitonin gene-related peptide in rat salivary glands: neural localization, depletion upon nerve stimulation, and effects on salivation in relation to substance P. Neuroscience 26:935–945

    Article  Google Scholar 

  • Ekström J, Håkansson R, Månsson B, Tobin G (1988b) Tachykinin involvement in parasympathetic nerve-evoked salivation of the ferret. Br J Pharmacol 94:707–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Filin VA, Esakov AI (1968) Interaction between taste receptors. Bull Exp Biol Med 65:9–11

    Article  Google Scholar 

  • Hille B (2001) Ionic channels of excitable membranes, 3rd edn. Sinauer, Sunderland

    Google Scholar 

  • Jaber L, Zhao F, Kolli T, Herness S (2014) A physiologic role for serotonergic transmission in adult rat taste buds. PLoS ONE 9:e112152

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim BJ, Chang IY, Choi S, Jun JY, Jeon J, Xu W, Kwon YK, Ren D, So I (2012) Involvement of Na+-leak channel in substance P-induced depolarization of pacemaking activity in interstitial cells of Cajal. Cell Physiol Biochem 29:501–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuramoto H (1988) An immunohistochemical study of cellular and nervous elements in the taste organ of the bullfrog, Rana catesbeiana. Arch Histol Cytol 51(2):205–221

    Article  CAS  PubMed  Google Scholar 

  • Linley JE, Ooi L, Pettinger L, Kirton H, Boyle JP, Peers C, Gamper N (2012) Reactive oxygen species are second messengers of neurokinin signaling in peripheral sensory neurons. Proc Natl Acad Sci USA 24:E1578–E1586

    Article  Google Scholar 

  • Linster C, Fontanini A (2014) Functional neuromodulation of chemoreception in vertebrates. Curr Opin Neurobiol 29:82–87

    Article  CAS  PubMed  Google Scholar 

  • Lytton WW (2002) From computer to brain, foundations of computational neuroscience. Springer, New York

    Google Scholar 

  • Miyamoto T, Okada Y, Sato T (1988) Ionic basis of receptor potential in frog taste cells induced by acid stimuli. J Physiol 405:699–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto T, Okada Y, Sato T (1989) Ionic basis of salt-induced receptor potential in frog taste cells. Comp Biochem Physiol 94A:591–595

    Google Scholar 

  • Miyamoto T, Okada Y, Sato T (1993) Cationic and anionic channels of apical receptive membrane in a frog taste cell contribute to generation of salt-induced receptor potential. Comp Biochem Physiol 105A:489–493

    Article  Google Scholar 

  • Murayama N, Ishiko N (1985) Effect of antidromic stimulation of the glossopharyngeal nerve on afferent discharge occurring with and without sensory stimulation of the frog tongue. Neurosci Lett 60:95–99

    Article  CAS  PubMed  Google Scholar 

  • Murayama N, Ishiko N (1986) Selective depressant action of antidromic impulses on gustatory nerve signals. J Gen Physiol 88:219–236

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Miyamoto T, Sato T (1986) Contribution of the receptor and basolateral membranes to the resting potential of a frog taste cell. Jpn J Physiol 36:139–150

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Miyamoto T, Sato T (1988) Ionic mechanism of generation of receptor potential in response to quinine in frog taste cell. Brain Res 450:295–302

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Miyamoto T, Sato T (1992) The ionic basis of the receptor potential of frog taste cells induced by sugar stimuli. J Exp Biol 162:23–36

    CAS  PubMed  Google Scholar 

  • Okada Y, Miyamoto T, Sato T (1993a) The ionic basis of the receptor potential of frog taste cells induced by water stimuli. J Exp Biol 174:1–17

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Miyamoto T, Sato T (1993b) Contribution of proton transporter to acid-induced receptor potential in frog taste cells. Comp Biochem Physiol 105A:725–728

    CAS  Google Scholar 

  • Otsuka M, Yoshioka K (1993) Neurotransmitter functions of mammalian tachykinins. Physiol Rev 73:229–308

    Article  CAS  PubMed  Google Scholar 

  • Sato T (1978) Off-response in frog taste nerve and cell after stimulation of the tongue with bitter solutions. Comp Biochem Physiol 61A:339–353

    Article  CAS  Google Scholar 

  • Sato T, Beidler LM (1975) Membrane resistance change of the frog taste cells in response to water and NaCl. J Gen Physiol 66:735–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Okada Y, Miyamoto T (1995) Molecular mechanisms of gustatory transductions in frog taste cells. Prog Neurobiol 46:239–287

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Toda K, Miyamoto T, Okada Y (2000) The origin of slow potentials on tongue surface induced by glossopharyngeal efferent fiber stimulation. Chem Senses 25:583–589

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Miyamoto T, Okada Y (2002) Slow potentials in taste cells induced by frog glossopharyngeal nerve stimulation. Chem Senses 27:367–374

    Article  PubMed  Google Scholar 

  • Sato T, Okada Y, Toda K (2004) Analysis of slow hyperpolarizing potentials in frog taste cells induced by glossopharyngeal nerve stimulation. Chem Senses 29:651–657

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Okada Y, Miyazaki T, Kato Y, Toda K (2005) Taste cell responses in the frog are modulated by parasympathetic efferent fibers. Chem Senses 30:761–769

    Article  PubMed  Google Scholar 

  • Sato T, Nishishita K, Okada Y, Toda K (2007) Characteristics of biphasic slow depolarizing and slow hyperpolarizing potential in frog taste cell induced by parasympathetic efferent stimulation. Chem Senses 32:817–823

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Nishishita K, Okada Y, Toda K (2009) Interaction between gustatory depolarizing receptor potential and efferent-induced slow depolarizing synaptic potential in frog taste cell. Cell Mol Neurobiol 29:243–252

    Article  PubMed  Google Scholar 

  • Sato T, Nishishita K, Okada Y, Toda K (2012) Efferent fibers innervate gustatory and mechanosensitive afferent fibers in frog fungiform papillae. Chem Senses 37:315–324

    Article  CAS  PubMed  Google Scholar 

  • Steinhoff MS, von Mentzer B, Geppetti P, Pothoulakis C, Bunnett NW (2014) Tachykinins and their receptors: contributions to physiological control and the mechanisms of disease. Physiol Rev 94:265–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tadokoro O, Ando H, Kawahara I, Asanuma N, Okumura M, Kitagawa J, Kondo E, Yagasaki H (2016) Distribution and origin of VIP-, SP-, and phospholipase Cβ2-immunoreactive nerves in the tongue of the bullfrog, Rana catesbeiana. Anat Record 299:929–942

    Article  CAS  Google Scholar 

  • Taglietti V (1969) Effects of antidromic impulses on frog taste receptors. Arch Sci Biol 53:226–234

    CAS  Google Scholar 

  • Yoshida R, Ohkuri T, Jyotaki M, Yasuo T, Horio N, Yasumatsu K, Sanematsu K, Shigemura N, Yamamoto T, Margolskee RF, Ninomiya Y (2010) Endocannabinoids selectively enhance sweet taste. Proc Natl Acad Sci USA 107:935–939

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by school running expense from Nagasaki University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukio Okada.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Ethical Approval

All applicable institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Okada, Y. Enhancement of Gustatory Neural Responses by Parasympathetic Nerve in the Frog. Cell Mol Neurobiol 38, 883–890 (2018). https://doi.org/10.1007/s10571-017-0562-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0562-5

Keywords

Navigation