Skip to main content
Log in

Axonal microtubules are stained and cross-linked by highly cationic polyethyleneimine

  • Published:
Journal of Neurocytology

Summary

Highly cationic polyethyleneimine was used as an electron microscopic tracer for anionic sites in the axoplasm of rat sciatic and optic nerve fibres. Microtubules showed a markedly increased electron density and aggregated to form large groups, mostly located in the immediate proximity of membranous axoplasmic organelles. Walls of adjacent microtubules were fused; there was also fusion of microtubules with the membranes of smooth axoplasmic reticulum and with axolemma. In contrast, neurofilaments had unaltered electron density and axoplasmic distribution. Staining and clustering of microtubules were interpreted as electrostatic binding of cationic polyethyleneimine to acidic tubulin. These findings may be relevant to the role of microtubules in fast axonal transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behnke, O. (1975) An outer component of microtubules.Nature 257, 709–10.

    PubMed  Google Scholar 

  • Burton, P. R. (1981) Polymorphic assemblies of tubulin. InCell and Muscle Motility, Vol. 1 (edited byDowben, R. M. &Shay, J. W.), pp. 289–333. New York, London: Plenum Press.

    Google Scholar 

  • Ishikawa, H., Tsukita, S. &Tsukita, S. (1982) Association of the cytoskeleton with cell membranes — a concept of plasmalemmal undercoat. InBiological Functions of Microtubules and Related Structures (edited bySakai, H., Mohri, H. &Borisy, G. G.), pp. 377–89. Tokyo, New York: Academic Press.

    Google Scholar 

  • Jacobs, M., Bennett, P. M. &Dickens, M. J. (1975) Duplex microtubule is a new form of tubulin assembly induced by polycations.Nature 257, 707–9.

    PubMed  Google Scholar 

  • Jordan, M. A., Margolis, R. L., Himes, R. H. &Wilson, L. (1986) Identification of a distinct class of vinblastine binding sites on microtubules.Journal of Molecular Biology 187, 61–73.

    PubMed  Google Scholar 

  • Kim, H., Binder, L. I. &Rosenbaum, J. L. (1979) The periodic association of MAP2 with brain microtubules in vitro.Journal of Cell Biology 80, 266–76.

    PubMed  Google Scholar 

  • Olmsted, J. B., Marcum, J. M., Johnson, K. A., Allen, C. &Borisy, G. G. (1974) Microtubule assembly: some possible regulatory mechanisms.Journal of Supramolecular Structure 2, 429–50.

    PubMed  Google Scholar 

  • Pachter, J. S., Liem, R. K. H. &Shelanski, M. L. (1984) The neuronal cytoskeleton.Advances in Cellular Neurobiology 5, 113–42.

    Google Scholar 

  • Reale, E., Luciano, L. &Kühn, K.-W. (1983) Ultrastructural architecture of proteoglycans in the glomerular basement membrane.Journal of Histochemistry and Cytochemistry 31, 662–8.

    PubMed  Google Scholar 

  • Schlaepfer, W. W. (1971) Vincristine-induced axonal alterations in rat peripheral nerve.Journal of Neuropathology and Experimental Neurology 30, 488–505.

    PubMed  Google Scholar 

  • Schnapp, B. J. &Reese, T. S. (1982) Cytoplasmic structure in rapid-frozen axons.Journal of Cell Biology 94, 667–9.

    PubMed  Google Scholar 

  • Schurer, J. W., Hoedemaeker, P. J. &Molenaar, I. (1977) Polyethyleneimine as tracer particle for (immuno) electron microscopy.Journal of Histochemistry and Cytochemistry 25, 384–7.

    PubMed  Google Scholar 

  • Schurer, J. W., Kalicharan, D., Hoedemaeker, P. J. &Molenaar, I. (1978) The use of polyethyleneimine for demonstration of anionic sites in basement membranes and collagen fibrils.Journal of Histochemistry and Cytochemistry 26, 688–9.

    PubMed  Google Scholar 

  • Sloboda, R. D. &Rosenbaum, J. L. (1979) Decoration and stabilization of intact, smooth-walled microtubules with microtubule associated proteins.Biochemistry 18, 48–55.

    PubMed  Google Scholar 

  • Suzuki, Y., Maesawa, A., Matsui, K., Oite, T., Koda, Y. &Arakawa, M. (1983) Alteration of glomerular anionic sites by the development of subepithelial deposits in experimental glomerulonephritis in the rat.Virchows Archiv, B. Cell Pathology 44, 209–22.

    Google Scholar 

  • Suzuki, Y., Maruyama, Y., Arakawa, M. &Oite, T. (1984) Preservation of fixed anionic sites in the GBM in the acute proteinuric phase of cationic antigen mediated in-situ immune complex glomerulonephritis in the rat.Histochemistry 81, 243–6.

    PubMed  Google Scholar 

  • Wilson, L., Bryan, J., Ruby, A. &Mazia, D. (1970) Precipitation of proteins by vinblastine and calcium ions.Proceedings of the National Academy of Sciences USA 66, 807–14.

    Google Scholar 

  • Wilson, L., Morse, A., Jordan, M. A. &Margolis, R. L. (1982) Interaction of vinblastine with steady-state microtubules in vitro: mechanism of inhibition of net tubulin addition to assembly ends. InBiological Functions of Microtubules and Related Structures (edited bySakai, H., Mohri, H. &Borisy, G. G.), pp. 61–72. Tokyo, New York: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheidt, P., Friede, R.L. Axonal microtubules are stained and cross-linked by highly cationic polyethyleneimine. J Neurocytol 16, 215–220 (1987). https://doi.org/10.1007/BF01795305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01795305

Keywords

Navigation