Skip to main content

Measuring the Impact of Tubulin Posttranslational Modifications on Axonal Transport

  • Protocol
  • First Online:
Cytoskeleton Dynamics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2101))

Abstract

Axonal transport is a process essential for neuronal function and survival that takes place on the cellular highways—the microtubules. It requires three major components: the microtubules that serve as tracks for the transport, the motor proteins that drive the movement, and the transported cargoes with their adaptor proteins. Axonal transport could be controlled by tubulin posttranslational modifications, which by decorating specific microtubule tracks could determine the specificity of cargo delivery inside neurons. However, it appears that the effects of tubulin modifications on transport can be rather subtle, and might thus be easily overlooked depending on which parameter of the transport process is analyzed. Here we propose an analysis paradigm that allows detecting rather subtle alterations in neuronal transport, as induced for instance by accumulation of posttranslational polyglutamylation. Analyzing mitochondria movements in axons, we found that neither the average speed nor the distance traveled were affected by hyperglutamylation, but we detected an about 50% reduction of the overall motility, suggesting that polyglutamylation controls the efficiency of mitochondria transport in axons. Our protocol can readily be expanded to the analysis of the impact of other tubulin modifications on the transport of a range of different neuronal cargoes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vale RD (2003) The molecular motor toolbox for intracellular transport. Cell 112(4):467–480

    Article  CAS  PubMed  Google Scholar 

  2. Franker MAM, Hoogenraad CC (2013) Microtubule-based transport—basic mechanisms, traffic rules and role in neurological pathogenesis. J Cell Sci 126(Pt 11):2319–2329. https://doi.org/10.1242/jcs.115030

    Article  CAS  PubMed  Google Scholar 

  3. Millecamps S, Julien J-P (2013) Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci 14(3):161–176. https://doi.org/10.1038/nrn3380

    Article  CAS  PubMed  Google Scholar 

  4. Brady ST, Morfini GA (2017) Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 105:273–282. https://doi.org/10.1016/j.nbd.2017.04.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kneynsberg A, Combs B, Christensen K, Morfini G, Kanaan NM (2017) Axonal degeneration in tauopathies: disease relevance and underlying mechanisms. Front Neurosci 11:572. https://doi.org/10.3389/fnins.2017.00572

    Article  PubMed  PubMed Central  Google Scholar 

  6. Janke C (2014) The tubulin code: Molecular components, readout mechanisms, and functions. J Cell Biol 206(4):461–472. https://doi.org/10.1083/jcb.201406055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Magiera MM, Singh P, Janke C (2018) SnapShot: functions of tubulin posttranslational modifications. Cell 173(6):1552–1552.e1. https://doi.org/10.1016/j.cell.2018.05.032

    Article  CAS  PubMed  Google Scholar 

  8. Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV, Strub J-M, Temurak N, van Dijk J, Boucher D, van Dorsselaer A, Suryavanshi S, Gaertig J, Eddé B (2005) Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308(5729):1758–1762. https://doi.org/10.1126/science.1113010

    Article  CAS  PubMed  Google Scholar 

  9. van Dijk J, Rogowski K, Miro J, Lacroix B, Eddé B, Janke C (2007) A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol Cell 26(3):437–448. https://doi.org/10.1016/j.molcel.2007.04.012

    Article  CAS  PubMed  Google Scholar 

  10. Rogowski K, van Dijk J, Magiera MM, Bosc C, Deloulme J-C, Bosson A, Peris L, Gold ND, Lacroix B, Bosch Grau M, Bec N, Larroque C, Desagher S, Holzer M, Andrieux A, Moutin M-J, Janke C (2010) A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143(4):564–578. https://doi.org/10.1016/j.cell.2010.10.014

    Article  CAS  PubMed  Google Scholar 

  11. Tort O, Tanco S, Rocha C, Bieche I, Seixas C, Bosc C, Andrieux A, Moutin M-J, Xavier Aviles F, Lorenzo J, Janke C (2014) The cytosolic carboxypeptidases CCP2 and CCP3 catalyze posttranslational removal of acidic amino acids. Mol Biol Cell 25(19):3017–3027. https://doi.org/10.1091/mbc.E14-06-1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kimura Y, Tsutsumi K, Konno A, Ikegami K, Hameed S, Kaneko T, Kaplan OI, Teramoto T, Fujiwara M, Ishihara T, Blacque OE, Setou M (2018) Environmental responsiveness of tubulin glutamylation in sensory cilia is regulated by the p38 MAPK pathway. Sci Rep 8(1):8392. https://doi.org/10.1038/s41598-018-26694-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ikegami K, Mukai M, Tsuchida J-I, Heier RL, Macgregor GR, Setou M (2006) TTLL7 is a mammalian beta-tubulin polyglutamylase required for growth of MAP2-positive neurites. J Biol Chem 281(41):30707–30716

    Article  CAS  PubMed  Google Scholar 

  14. Magiera MM, Bodakuntla S, Ziak J, Lacomme S, Marques Sousa P, Leboucher S, Hausrat TJ, Bosc C, Andrieux A, Kneussel M, Landry M, Calas A, Balastik M, Janke C (2018) Excessive tubulin polyglutamylation causes neurodegeneration and perturbs neuronal transport. EMBO J 37(23):e100440. https://doi.org/10.15252/embj.2018100440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Magiera MM, Singh P, Gadadhar S, Janke C (2018) Tubulin posttranslational modifications and emerging links to human disease. Cell 173(6):1323–1327. https://doi.org/10.1016/j.cell.2018.05.018

    Article  CAS  PubMed  Google Scholar 

  16. Ikegami K, Sato S, Nakamura K, Ostrowski LE, Setou M (2010) Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc Natl Acad Sci U S A 107(23):10490–10495. https://doi.org/10.1073/pnas.1002128107

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wu H-Y, Wei P, Morgan JI (2017) Role of cytosolic carboxypeptidase 5 in neuronal survival and spermatogenesis. Sci Rep 7:41428. https://doi.org/10.1038/srep41428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mullen RJ, Eicher EM, Sidman RL (1976) Purkinje cell degeneration, a new neurological mutation in the mouse. Proc Natl Acad Sci U S A 73(1):208–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giordano T, Gadadhar S, Bodakuntla S, Straub J, Leboucher S, Martinez G, Chemlali W, Bosc C, Andrieux A, Bieche I, Arnoult C, Geimer S, Janke C (2019) Loss of the deglutamylase CCP5 perturbs multiple steps of spermatogenesis and leads to male infertility. J Cell Sci 132(3). https://doi.org/10.1242/jcs.226951

  20. Konno A, Ikegami K, Konishi Y, Yang H-J, Abe M, Yamazaki M, Sakimura K, Yao I, Shiba K, Inaba K, Setou M (2016) Ttll9−/− mice sperm flagella show shortening of doublet 7, reduction of doublet 5 polyglutamylation and a stall in beating. J Cell Sci 129(14):2757–2766. https://doi.org/10.1242/jcs.185983

    Article  CAS  PubMed  Google Scholar 

  21. Bosch Grau M, Masson C, Gadadhar S, Rocha C, Tort O, Marques Sousa P, Vacher S, Bieche I, Janke C (2017) Alterations in the balance of tubulin glycylation and glutamylation in photoreceptors leads to retinal degeneration. J Cell Sci 130:938–949. https://doi.org/10.1242/jcs.199091

    Article  CAS  PubMed  Google Scholar 

  22. Gilmore-Hall S, Kuo J, Ward JM, Zahra R, Morrison RS, Perkins G, La Spada AR (2019) CCP1 promotes mitochondrial fusion and motility to prevent Purkinje cell neuron loss in pcd mice. J Cell Biol 218(1):206–219. https://doi.org/10.1083/jcb.201709028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shashi V, Magiera MM, Klein D, Zaki M, Schoch K, Rudnik-Schoneborn S, Norman A, Lopes Abath Neto O, Dusl M, Yuan X, Bartesaghi L, De Marco P, Alfares AA, Marom R, Arold ST, Guzman-Vega FJ, Pena LD, Smith EC, Steinlin M, Babiker MO, Mohassel P, Foley AR, Donkervoort S, Kaur R, Ghosh PS, Stanley V, Musaev D, Nava C, Mignot C, Keren B, Scala M, Tassano E, Picco P, Doneda P, Fiorillo C, Issa MY, Alassiri A, Alahmad A, Gerard A, Liu P, Yang Y, Ertl-Wagner B, Kranz PG, Wentzensen IM, Stucka R, Stong N, Allen AS, Goldstein DB, Schoser B, Rosler KM, Alfadhel M, Capra V, Chrast R, Strom TM, Kamsteeg E-J, Bonnemann CG, Gleeson JG, Martini R, Janke C, Senderek J (2018) Loss of tubulin deglutamylase CCP1 causes infantile-onset neurodegeneration. EMBO J 37(23):e100540. https://doi.org/10.15252/embj.2018100540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16(4):335–344. https://doi.org/10.1038/ncb2920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ikegami K, Heier RL, Taruishi M, Takagi H, Mukai M, Shimma S, Taira S, Hatanaka K, Morone N, Yao I, Campbell PK, Yuasa S, Janke C, Macgregor GR, Setou M (2007) Loss of alpha-tubulin polyglutamylation in ROSA22 mice is associated with abnormal targeting of KIF1A and modulated synaptic function. Proc Natl Acad Sci U S A 104(9):3213–3218. https://doi.org/10.1073/Pnas.0611547104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Maas C, Belgardt D, Lee HK, Heisler FF, Lappe-Siefke C, Magiera MM, van Dijk J, Hausrat TJ, Janke C, Kneussel M (2009) Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. Proc Natl Acad Sci U S A 106(21):8731–8736. https://doi.org/10.1073/pnas.0812391106

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ghiretti AE, Thies E, Tokito MK, Lin T, Ostap EM, Kneussel M, Holzbaur ELF (2016) Activity-dependent regulation of distinct transport and cytoskeletal remodeling functions of the dendritic kinesin KIF21B. Neuron 92(4):857–872. https://doi.org/10.1016/j.neuron.2016.10.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Olenick MA, Dominguez R, Holzbaur ELF (2019) Dynein activator Hook1 is required for trafficking of BDNF-signaling endosomes in neurons. J Cell Biol 218(1):220–233. https://doi.org/10.1083/jcb.201805016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zala D, Hinckelmann M-V, Yu H, Lyra da Cunha MM, Liot G, Cordelieres FP, Marco S, Saudou F (2013) Vesicular glycolysis provides on-board energy for fast axonal transport. Cell 152(3):479–491. https://doi.org/10.1016/j.cell.2012.12.029

    Article  CAS  PubMed  Google Scholar 

  30. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Albrecht D, Winterflood CM, Sadeghi M, Tschager T, Noe F, Ewers H (2016) Nanoscopic compartmentalization of membrane protein motion at the axon initial segment. J Cell Biol 215(1):37–46. https://doi.org/10.1083/jcb.201603108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kuijpers M, van de Willige D, Freal A, Chazeau A, Franker MA, Hofenk J, Rodrigues RJC, Kapitein LC, Akhmanova A, Jaarsma D, Hoogenraad CC (2016) Dynein regulator NDEL1 controls polarized cargo transport at the axon initial segment. Neuron 89(3):461–471. https://doi.org/10.1016/j.neuron.2016.01.022

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the ANR-10-IDEX-0001-02, the LabEx CelTisPhyBio ANR-11-LBX-0038. CJ is supported by the Institut Curie, the French National Research Agency (ANR) awards ANR-12-BSV2-0007 and ANR-17-CE13-0021, the Institut National du Cancer (INCA) grant 2014-PL BIO-11-ICR-1, and the Fondation pour la Recherche Medicale (FRM) grant DEQ20170336756. MMM is supported by the EMBO short-term fellowship ASTF 148-2015 and by the Fondation Vaincre Alzheimer grant FR-16055p, and SB by the FRM grant FDT201805005465. We thank C. Alberti, E. Belloir, F. Bertrand, V. Dangles-Marie, I. Grandjean, C. Caspersen, H. Hermange, A. Thadal, G. Buhagiar, C. Serieyssol, S. Gadadhar, and M. Sittewelle (Institut Curie) for technical assistance. We are grateful to M.-N. Soler, C. Lovo, and L. Besse from the PICT-IBiSA@Orsay Imaging Facility of the Institut Curie supported by the ANR through the “Investment for the future” program (France-BioImaging, ANR-10-INSB-04), and to N. Manel (Institut Curie, Paris) for material and advice for the lentivirus production. We would like to thank F. Cordelières (Bordeaux Imaging Center, France) for the KymoToolBox plug-in, as well as M. Brill (Technical University Munich, Germany), F. Del Bene, V. Marthiens (Institut Curie), and C. González-Billault (University of Chile, Santiago, Chile) for instructive discussions and advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria M. Magiera or Carsten Janke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bodakuntla, S., Magiera, M.M., Janke, C. (2020). Measuring the Impact of Tubulin Posttranslational Modifications on Axonal Transport. In: Maiato, H. (eds) Cytoskeleton Dynamics. Methods in Molecular Biology, vol 2101. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0219-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0219-5_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0218-8

  • Online ISBN: 978-1-0716-0219-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics