Skip to main content
Log in

Studies on allosteric phenomena in glycogen phosphorylaseb

  • General and Review Articles
  • b. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

This article attempts to trace, from a personal point of view, the history of discoveries of allosteric phenomena in phosphorylaseb and the later development of systematic attempts to fit the data into comprehensive theoretical models. Work from our own laboratory is emphasized, but we try to integrate this into the results from other investigators and show their contributions to our ideas and experiments. Finally, some recent unpublished data is presented together with some conclusions and predictions from a new hypothesis.

The discoveries byCarl andGerty Cori of the activation of phosphorylase by AMP, the inhibition by glucose and the enzymatic interconversion of two forms of the enzyme with different control properties helped lay the foundations of our present understanding of allosteric mechanisms. The later discovery of the oligomeric nature of phosphorylase and its relationship to AMP binding served as a basis for many years of research into the structurefunction relationships of phosphorylase and other enzymes. Data showing that AMP lowers the entropy of activation is discussed with respect to the role of the nucleotide and its binding close to the active site. The discovery of the control of phosphorylaseb by common metabolites and the impetus this gave to the intensive kinetic studies of the last ten years, wherein fitting to theoretical models has been a common feature, is reviewed.

Chemical and physical probes were sought in order to find evidence for the conformational states and transitions predicted by kinetics. Allosteric inhibitors and activators antagonized each other with respect to rates of isocynate inhibition while substrate provided additional protection to enzyme saturated with AMP, suggesting an additional conformational state. This was confirmed by effects on sulfhydryl group reactivity, and it was also shown that substrate by itself increased the reactivity of a particular —SH group. Thus AMP by itself causes the basic T state to assume the R′ conformational state, substrate induces this into an R state, but substrate by itself promotes what we may term an S state. Other laboratories have also presented kinetic and physico-chemical evidence for the R′, R and S states.

Further evidence for the conformational states mentioned above was obtained by examining the effect of ligands on the quenching of the pyridoxal phosphate (PLP) cofactor by iodide or on the quantum yield of the PLP. The allosteric inhibitor, ATP, increased both the accessibility of PLP to iodide and the quantum yield, suggesting induction of a different conformational state which we term I, evidence for which has also been presented by other groups using other probes. Surprisingly, however, ATP or glucose-6-P, which antagonize substrate binding in the presence of AMP, show positive homotropic cooperativity with substrate in the absence of AMP. Thus the inhibitor and the substrate improve each others' binding, as indicated by the PLP fluorescence, and this suggests that both may bind simultaneously and tightly to a conformational state which we term T′. These suggestions are incorporated into a model and the implications for the structurefunction relationships in the enzyme are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cori, C. F. and Cori, G. T., Proc. Soc. Exp. Biol. Med. 34, 702–705, 1936.

    Google Scholar 

  2. Cori, G. T. and Cori, C. F., J. Biol. Chem. 135, 733–756, 1940.

    Google Scholar 

  3. Cori, C. F., Cori, G. T. and Green, A. A., J. Biol. Chem. 151, 39–55, 1943.

    Google Scholar 

  4. Cori, G. T. and Cori, C. F., J. Biol. Chem. 158, 321–332, 1945.

    Google Scholar 

  5. Cohn, M. and Cori, G. T., J. Biol. Chem. 175, 89–93, 1948.

    Google Scholar 

  6. Keller, P. J. and Cori, G. T., Biochim. Biophys. Acta 12, 235–238, 1953.

    PubMed  Google Scholar 

  7. Fischer, E. H., Graves, D. J., Crittenden, E. R. S. and Krebs, E. G., J. Biol. Chem. 234, 1698–1704, 1959.

    PubMed  Google Scholar 

  8. Madsen, N. B. and Cori, C. F., Biochim. Biophys. Acta 18, 156–157, 1955.

    PubMed  Google Scholar 

  9. Madsen, N. B. and Cori, C. F., Biochim. Biophys. Acta 15, 516–525, 1954.

    PubMed  Google Scholar 

  10. Helmreich, E. and Cori, C. F., Proc. N.S.A. 52, 647–654, 1964.

    Google Scholar 

  11. Dwek, R. A., Griffiths, J. R. and Radda G. K., Rate Contol and Biological Processes (Davies, D. D., ed.) 49–63, University Press, Cambridge, 1973.

    Google Scholar 

  12. Madsen, N. B. and Cori, C. F., J. Biol. Chem. 224, 899–908, 1957.

    PubMed  Google Scholar 

  13. Monod, J., Wyman, J. and Changeux, J. P., J. Mol. Biol. 12, 88–118, 1965.

    PubMed  Google Scholar 

  14. Avramovic, O. and Madsen, N. B., J. Biol. Chem. 243, 1656–1662, 1968.

    PubMed  Google Scholar 

  15. Madsen, N. B., Biochem. Biophys. Res. Comm. 6, 310–313, 1961.

    PubMed  Google Scholar 

  16. Madsen, N. B., Can. J. Biochem. Physiol. 41, 561–571, 1963.

    Google Scholar 

  17. Maddaiah, V. T. and Madsen, N. B., Biochim. Biophys. Acta 121, 261–268, 1966.

    PubMed  Google Scholar 

  18. Parmeggiani, A. and Morgan, H. E., Biochem. Biophys. Res. Comm. 9, 252–256, 1962.

    PubMed  Google Scholar 

  19. Morgan, H. E. and Parmeggiani, A., J. Biol. Chem. 239, 2440–2445, 1964.

    PubMed  Google Scholar 

  20. Madsen, N. B., Biochem. Biophys. Res. Comm. 15, 390–395, 1964.

    Google Scholar 

  21. Helmreich, E. and Cori, C. F., Proc. N.A.S. 51, 131–138, 1964.

    Google Scholar 

  22. Monod, J., Changeux, J. P. and Jacob, F., J. Mol. Biol. 6, 306–329, 1963.

    PubMed  Google Scholar 

  23. Ullman, A., Vagelos, P. R. and Monod, J., Biochem. Biophys. Comm. 17, 86–92, 1964.

    Google Scholar 

  24. Fischer, E. H., Heilmeyer, L. M. G. and Haschke, R. H., Current Topics in Cellular Regulation 4, 211–251. Academic Press, New York, 1971.

    Google Scholar 

  25. Graves, D. J. and Wang, J. H., The Enzymes (Boyer, P. D., ed) 8, 435–482. Academic Press, New York, 1972.

    Google Scholar 

  26. Madsen, N. B., The Molecular Basis of Biological Activity (Gaede, K., Horecker, B. L. and Whelan, W. J., eds.) 13–52. Academic Press, New York, 1972.

    Google Scholar 

  27. Madsen, N. B. and Schechosky, S., J. Biol. Chem. 242, 3301–3307, 1967.

    PubMed  Google Scholar 

  28. Buc, H., Biochem Biophys. Res. Comm. 28, 59–64, 1967.

    PubMed  Google Scholar 

  29. Buc, M. H. and Buc, H., 4th Fed. European Biochem. Soc. 109–130. Academic Press, New York, 1968.

    Google Scholar 

  30. Engers, H. D. and Madsen, N. B., Biochem. Biophys. Res. Comm. 33, 49–54, 1968.

    PubMed  Google Scholar 

  31. Kastenschmidt, L. L., Kastenschmidt, J. and Helmreich, E., Biochemistry 7, 4543–4556, 1968.

    PubMed  Google Scholar 

  32. Black, W. J. and Wong, J. H., J. Biol. Chem. 243, 5892–5898, 1968.

    PubMed  Google Scholar 

  33. Birkett, D. J., Dwek, R. A., Radda, G. K., Richards, R. E., and Salmon, A. G., European J. Biochem. 20, 494–508, 1971.

    Google Scholar 

  34. Maddaiah, V. T. and Madsen, N. B., J. Biol. Chem. 241, 3873–3881, 1966.

    PubMed  Google Scholar 

  35. Engers, H. D., Bridger, W. A. and Madsen, N. B., J. Biol. Chem. 244, 5936–5942, 1969.

    PubMed  Google Scholar 

  36. Engers, H. D., Schechosky, S. and Madsen, N. B., Can. J. Biochem. 48, 746–754, 1970.

    PubMed  Google Scholar 

  37. Engers, H. D., Bridger, W. A. and Madsen, N. B., Can. J. Biochem. 48, 755–758, 1970.

    PubMed  Google Scholar 

  38. Gold, A. M., Johnson, R. M. and Tseng, J. K., J. Biol. Chem. 245, 2564–2572, 1970.

    PubMed  Google Scholar 

  39. Chao, J., Johnson, G. F. and Graves, D. J., Biochemistry 8, 1459–1466, 1969.

    PubMed  Google Scholar 

  40. Engers, H. D., Bridger, W. A. and Madsen, N. B., Biochemistry 9, 3281–3284, 1970.

    PubMed  Google Scholar 

  41. Zarkadas, C. G., Smillie, L. B. and Madsen, N. B., J. Mol. Biol. 38, 245–247, 1968.

    PubMed  Google Scholar 

  42. Zarkadas, C. G., Smillie, L. B. and Madsen, N. B., Can. J. Biochem. 48, 763–776, 1970.

    PubMed  Google Scholar 

  43. Battell, M. L., Zarkadas, C. G., Smillie, L. B. and Madsen, N. B., J. Biol. Chem. 243, 6202–6209, 1968.

    PubMed  Google Scholar 

  44. Avramovic-Zikic, O., Smillie, L. B. and Madsen, N. B., J. Biol. Chem. 245, 1556–1565, 1970.

    Google Scholar 

  45. Jokay, I. G., Damjanovich, S. and Toth, S., Arch Biochem. Biophysic 112, 471–475, 1965.

    Google Scholar 

  46. Gold, A. M., Biochemistry 7, 2106–2115, 1968.

    PubMed  Google Scholar 

  47. Radda, G. K. and Dwek, R. A., Protein-Protein Interactions (Jaenicki R. and Helmreich, E., eds.) 213–243. Academic Press, New York, 1972.

    Google Scholar 

  48. Madsen, N. B., Avramovic-Zikic, O. and Honikel, K. O., Ann. N.Y. Acad. Sci. 210, 222–237, 1973.

    PubMed  Google Scholar 

  49. Shaltiel, S. and Fischer, E. H., Israel J. Chem. 5, 127, 1967.

    Google Scholar 

  50. Honikel, K. O. and Madsen, N. B., Can. J. Biochem. 51, 344–356, 1973.

    PubMed  Google Scholar 

  51. Honikel, K. O. and Madsen, N. B., J. Biol. Chem. 247, 1057–1064, 1972.

    PubMed  Google Scholar 

  52. Mott, D. M. and Bieber, A. L., J. Biol. Chem. 245, 4058–4066, 1970.

    PubMed  Google Scholar 

  53. Kastenschmidt, L. L., Kastenschmidt, J. and Helmreich, E., Biochemistry, 7, 3590–3608, 1968.

    PubMed  Google Scholar 

  54. Cambell, I. D., Dwek, R. A., Price, N. C. and Radda, G. K., Eur. J. Biochem. 30, 339–347, 1972.

    PubMed  Google Scholar 

  55. Buc, H., Buc, M. H., Blanco, F. G., Morange, M. and Winkler, H., Metabolic Interconversion of Enzymes (Fischer, E. H., et al.,) 21–31, Springer Verlag, New York, 1973.

    Google Scholar 

  56. Yunis, A. A., Fischer, E. H. and Krebs, E. G., J. Biol. Chem. 237, 2809–2815, 1962.

    PubMed  Google Scholar 

  57. Davis, C. H., Schliselfeld, L. H., Wolf, D. P., Leavitt, C. A., and Krebs, E. H., J. Biol. Chem. 242, 4824–4833, 1967.

    PubMed  Google Scholar 

  58. Avramovic-Zikic, O. and Madsen, N. B., Can. J. Biochem. 52, 146–148, 1974.

    PubMed  Google Scholar 

  59. Johnson, L. N., Madsen, N. B., Mosley, J. and Wilson, K. S., J. Mol. Biol. 90, 703–717, 1974.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An invited article. Research done in this laboratory was supported by grant MT-1414 from the Medical Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madsen, N.B., Avramovic-Žikic, O., Lue, P.F. et al. Studies on allosteric phenomena in glycogen phosphorylaseb . Mol Cell Biochem 11, 35–50 (1976). https://doi.org/10.1007/BF01792832

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01792832

Keywords

Navigation