Skip to main content
Log in

DNA polymorphism haplotypes of the human apolipoprotein APOA1-APOC3-APOA4 gene cluster

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

The genes coding for apolipoproteins A1, C3, and A4 (APOA1, APOC3, APOA4) are closely linked and tandemly organized within a 15-kilobase (kb) DNA segment on the long arm of human chromosome 11. The nucleotide variability of a 61-kb DNA segment containing these genes and their flanking sequences was studied by restriction analysis of a sample of 18 unrelated Northern Europeans using seven different genomic DNA probes. Eleven restriction site polymorphisms located within this DNA segment were used for haplotype analysis of 129 Mediterranean and 67 American black chromosomes. Estimation of the extent of nonrandom association between these polymorphisms indicated considerable linkage disequilibrium within the APOA1-APOC3-APOA4 gene cluster. Several haplotypes arose by recombination, and the rate of recombination within this gene cluster was estimated to be at least 4 times greater than that expected based on uniform recombination. The polymorphism information content of each of these polymorphisms, taken individually, ranges between 0.053 and 0.375, while that of their haplotypes ranges between 0.858 and 0.862. Therefore, DNA polymorphism haplotypes in the APOA1-APOC3-APOA4 gene cluster constitute a highly informative genetic marker on the long arm of human chromosome 11.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams J, Ward RH (1973) Admixture studies and the detection of selection. Science 180:1137–1143

    Google Scholar 

  • Antonarakis SE, Boehm CD, Giardina PJV, Kazazian HH Jr (1982) Nonrandom association of polymorphic restriction sites in the β-globin gene cluster. Proc Natl Acad Sci USA 79:137–141

    Google Scholar 

  • Blanton SH, Chakravarti A (1987) A global test of linkage disequilibrium. Am J Hum Genet 41:A250 (abstr)

    Google Scholar 

  • Botstein D, White R, Skolnick M, Davis R (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331

    Google Scholar 

  • Brown AHD, Feldman MW, Nevo E (1980) Multilocus structure of natural population of Hordeum spontaneum. Genetics 96:523–536

    Google Scholar 

  • Bruns GAP, Karathanasis SK, Breslow JL (1984) Human apolipoprotein AI-CIII gene complex is located on chromosome 11. Arteriosclerosis 4:97–102

    Google Scholar 

  • Chakravarti A, Buetow KH (1985) A strategy for using RFLP for genetic counseling. Am J Hum Genet 37:984–987

    Google Scholar 

  • Chakravarti A, Buetow KH, Antonarakis SE, Waber PG, Boehm CD, Kazazian HH Jr (1984a) Nonuniform recombination within the human β-globin gene cluster. Am J Hum Genet 36:1239–1258

    Google Scholar 

  • Chakravarti A, Phillips JA, Mellits KM, Buetow KH, Seeburg PH (1984b) Patterns of polymorphisms and linkage disequilibrium suggest independent origins of the human growth hormone gene cluster. Proc Natl Acad Sci USA 81:6085–6089

    Google Scholar 

  • Chakravarti A, Elbein SC, Permutt MA (1986) Evidence for increased recombination near the human insulin gene: implication for disease association studies. Proc Natl Acad Sci USA 83:1045–1049

    Google Scholar 

  • Cheung P, Kao FT, Law ML, Jones C, Puck TT, Chan L (1984) Isolation of the structural gene for human apolipoprotein AI on the long arm of human chromosome 11. Proc Natl Acad Sci USA 81:508–511

    Google Scholar 

  • Cohen T, Karathanasis SK, Kazazian HH JR, Antonarakis SE (1986) DNA polymorphic sites in the human APOAI-CIII-AIV cluster: Taq I and Ava I. Nucleic Acids Res 14:924

    Google Scholar 

  • Coleman RT, Gonzalez PA, Funke H, Assmann G, Levy-Wilson B, Frossard PM (1986) Polymorphisms in the apolipoprotein AI-CIII gene complex. Mol Biol Med 3:213–228

    Google Scholar 

  • Elshourbagy NA, Walker DW, Bogusky MS, Gordon JI, Taylor JM (1986) The nucleotide and derived amino acid sequence of human apolipoprotein AIV mRNA and the close linkage of its gene to the genes of apolipoproteins AI and CIII. J Biol Chem 261:1998–2002

    Google Scholar 

  • Ewens WJ (1983) The role of models in the analysis of the molecular genetic data with particular reference to restriction fragment data. In: Weir BS (ed) Statistical analysis of DNA sequence data. Dekker, New York, pp 45–73

    Google Scholar 

  • Ewens WJ, Spielman RS, Harris H (1981) Estimation of genetic variation at the DNA level from restriction endonuclease date. Proc Natl Acad Sci USA 78:3748–3750

    Google Scholar 

  • Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13

    Google Scholar 

  • Frossard PM, Coleman RT, Funke H, Assmann G (1986) Apa I RFLP 5.4 kb 5′ to the human apolipoprotein AI gene. Nucleic Acids Res 14:1922

    Google Scholar 

  • Griffiths RC (1982) The number of alleles and segregating sites in a sample from the infinite alleles model. Adv Appl Probab 14:225–239

    Google Scholar 

  • Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY, Young AB, Shoulson I, Bonilla E, Martin JB (1983) A polymorphic DNA marker genetically linked to Huntington's disease. Nature 306:234–238

    Google Scholar 

  • Herbert PN, Assmann G, Gotto AM Jr, Fredrickson DS (1983) Familial lipoprotein deficiency, abetalipoproteinemia, hypobetalipoproteinemia, and Tangier disease. In: Stanbury JB, Wyngarden JB, Fredrickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease, 5th edn. McGraw-Hill, New York, pp 589–621

    Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Google Scholar 

  • Hudson RR (1983) Properties of a neutral allele model with intragenic recombination. Theor Popul Biol 23:183–201

    Google Scholar 

  • Hudson RR (1988) How often are polymorphic restriction sites due to a single mutation? Mol Biol Evol (in press)

  • Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164

    Google Scholar 

  • Karathanasis SK (1985) Apolipoprotein multigene family: tandem organization of human apolipoprotein AI, CIII and AIV genes. Proc Natl Acad Sci USA 82:6374–6378

    Google Scholar 

  • Karathanasis SK, McPherson J, Zannis VI, Breslow JL (1983a) Linkage of human apolipoproteins AI and CIII genes. Nature 304:371–373

    Google Scholar 

  • Karathanasis SK, Zannis VI, Breslow JL (1983b) Isolation and characterization of the human apolipoprotein AI gene. Proc Natl Acad Sci USA 80:6147–6151

    Google Scholar 

  • Karathanasis SK, Oettgen P, Haddad IA, Antonarakis SE (1986) Structure, evolution and polymorphisms of the human apolipoprotein A4 gene. Proc Natl Acad Sci USA 83:8457–8461

    Google Scholar 

  • Karathanasis SK, Ferris E, Haddad IA (1987) DNA inversion within the apolipoproteins AI/CIII/AIV-encoding gene cluster of certain patients with premature atherosclerosis. Proc Natl Acad Sci USA 84:7198–7202

    Google Scholar 

  • Kessling AM, Horsthemke B, Humphries SE (1985) A study of DNA polymorphisms around the human apolipoprotein AI gene in hyperlipidemic and normal individuals. Clin Genet 28:296–306

    Google Scholar 

  • Kunkel LM, Smith KD, Boyer SH, Borgaonkar SD, Wachtel SS, Miller OJ, Breg WR, Jones HW, Rary JM (1977) Analysis of human Y chromosome specific reiterated DNA in chromosome variants. Proc Natl Acad Sci USA 74:1245–1249

    Google Scholar 

  • Law SW, Gray G, Brewer HB, Sakaguchi A-Y, Naylor SL (1984) Human apolipoprotein AI and CIII genes reside in the p11-q13 region of chromosome 11. Biochem Biophys Res Commun 118:934–942

    Google Scholar 

  • Lewontin RC (1964) The interaction of selection and linkage. I. General considerations. Genetics 49:49–67

    Google Scholar 

  • Litt M, Jorde LB (1986) Linkage disequilibria between pairs of loci within a highly polymorphic region of chromosome 2q. Am J Hum Genet 39:166–178

    Google Scholar 

  • Matteson KL, Ostrer H, Chakravarti A, Buetow KH, O'Brien WE, Beaudet AL, Phillips J (1985) A study of restriction fragment length polymorphisms at the human α1 antirypsin locus. Hum Genet 69:263–267

    Google Scholar 

  • Morton NE (1982) Outline of genetic epidemiology. Kager, Basel

    Google Scholar 

  • Nei M, Tajima F (1983) Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105:207–217

    Google Scholar 

  • Norum RA, Lakier JB, Goldstein S, Angel A, Goldberg RB, Block WD, Noffze DK, Dolphin PJ, Edelglass JF, Bogorad DD, Alaupovic P (1982) Familial deficiency of apolipoproteins AI and CIII and precocious coronary artery disease. N Engl J Med 306:1513–1515

    Google Scholar 

  • Oettgen P, Antonarakis SE, Karathanasis SK (1986a) Bgl II polymorphic site downstream to the human apolipoprotein AIV gene. Nucleic Acids Res 14:7138

    Google Scholar 

  • Oettgen P, Antonarakis SE, Karathanasis SK (1986b) Pvu II polymorphic site upstream to the ApoCIII gene. Nucleic Acids Res 14:5571

    Google Scholar 

  • Ordovas JM, Schaefer EJ, Salem D, Ward RH, Glueck CJ, Vergani C, Wilson PWF, Karathanasis SK (1986) Apolipoprotein AI gene polymorphism associated with premature coronary artery disease and familial hypoalphalipoproteinemia. N Engl J Med 314:671–677

    Google Scholar 

  • Orkin SH, Kazazian HH Jr, Antonarakis SE, Goff SC, Boehm CD, Sexton JP, Waber PG, Giardina PJV (1982) Linkage of β thalassemia mutations and β-globin gene polymorphisms with DNA polymorphisms in human β-globin gene cluster. Nature 296:627–631

    Google Scholar 

  • Rees A, Shoulders CC, Stocks J, Carlton DJ, Baralle FE (1983) DNA polymorphism adjacent to human apoprotein AI gene; relation to hypertriglyceridemia. Lancet I:444–446

    Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes G, Berg P (1977) Labelling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113:237–251

    Google Scholar 

  • Schmid CW, Jelinek WR (1982) The Alu family of dispersed repetitive sequences. Science 216:1065–1070

    Google Scholar 

  • Scott AF, Phillips JA, Migeon BR (1979) DNA restriction endonuclease analysis for localization of human β and δ globin genes on chromosome 11. Proc Natl Acad Sci USA 76:4563–4565

    Google Scholar 

  • Seilhamer JJ, Protter AA, Frossard PM, Levy-Wilson B (1984) Isolation and DNA sequence of full length cDNA and of the entire gene for human apolipoprotein AI — discovery of a new genetic polymorphism in the ApoAI gene. DNA 3:309–317

    Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Google Scholar 

  • Sved J (1971) Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor Popul Biol 2:125–141

    Google Scholar 

  • Thompson EA, Deeb S, Walker S, Motulsky AG (1988) The detection of linkage disequilibrium between closely linked markers: RFLPs of the ApoA1-C3 apolipoprotein genes. Am J Hum Genet 42:113–124

    Google Scholar 

  • Weir BS, Hill WG (1986) Non uniform recombination within the human β-globin gene cluster. Am J Hum Genet 38:776–778

    Google Scholar 

  • Yanisch-Perroy C, Vieriga J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13 Mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonarakis, S.E., Oettgen, P., Chakravarti, A. et al. DNA polymorphism haplotypes of the human apolipoprotein APOA1-APOC3-APOA4 gene cluster. Hum Genet 80, 265–273 (1988). https://doi.org/10.1007/BF01790095

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01790095

Keywords

Navigation