Skip to main content
Log in

The antimicrobial activity of cefotaxime: Comparative multinational hospital isolate surveys covering 15 years

Antimikrobielle Aktivität von Cefotaxim: Vergleich multinationaler Erregerstatistiken von Krankenhaus-Isolaten über 15 Jahre

  • Published:
Infection Aims and scope Submit manuscript

Summary

The “third-generation” cephalosporins (3GC) have emerged as one of the most significant therapeutic entities in the last 15 years. These 3GC compounds (using cefotaxime as a model) have generally maintained their potency and spectrum of activity against important pathogens. However, the continuing popularity of this class associated with local, regional, or national-level use or abuse has led to efficacy reduction against some organism populations associated with selection of Class I cephalosporinase, stably derepressed mutants predominantly amongCitrobacter andEnterobacter spp.; emergence of extended-spectrum β-lactamase producingEnterobacteriaceae (usuallyKlebsiella spp.), as well as some isolates mimicking Class I-type resistance patterns; and lastly, altered PBP-mediated resistance among pneumococci,Haemophilus influenzae and pathogenicNeisseria spp. Some of these resistance patterns had been present prior to the clinical introduction of 3GCs and have only significantly threatened their use in the last 5 years. Prudent application of these 3GC drugs should be the goal for this decade as follows: 1) use as monotherapy at appropriate doses and frequencies only for organisms with low potential for mutational events; 2) use combination therapy routinely for organisms such asCitrobacter, Enterobacter, some indole-positive proteae andPseudomonas aeruginosa, to minimize emerging resistance clones; 3) use conservatively in high risk patients to minimize “super-colonization” by emerging problem bacteria (e.g. vancomycin-resistant enterococci,Xanthomonas maltophilia etc.); 4) use only those agents among 3GCs that have documented safety, broad clinical applications to all age groups, acceptable pharmacokinetic features and clear cost-saving potential; and 5) use in prophylaxis (surgical procedure, selective decontamination), should be focused toward single-dose or short-course regimens to reduce total hospital-wide exposure to broad-spectrum β-lactam drugs. If these recommendations are followed and coupled with good infection control/epidemiology practices, the 3GC drugs will continue to have an important role in the chemotherapy of moderate-to-severe infections in this decade. However, physicians will need to be more knowledgeable about alternative treatment regimens when the described resistances appear in the hospital environments or in the individual patient.

Zusammenfassung

Die Cephalosporine der dritten Generation (3GC) stellen eine der bedeutendsten therapeutischen Entwicklungen der letzten 15 Jahre dar. Die Aktivität und das Wirkungsspektrum der 3GC Substanzen (mit Cefotaxim als Modell) gegen wichtige Erreger sind weitgehend erhalten geblieben. Der lokale, regionale oder nationale Gebrauch oder Mißbrauch dieser beliebten Substanzen ist jedoch mit einem Aktivitätsverlust gegen einige Erregergruppen verbunden. Er geht einher mit der Selektion stabil dereprimierter Mutanten mit Produktion von Cephalosporinasen oder Klasse-I beiCitrobacter- undEnterobacter-Spezies; Verbreitung vonEnterobacteriaceae, die β-Laktamasen mit erweitertem Breitspektrum produzieren (meistKlebsiella spp.) sowie einiger Isolate, die Klasse-I Resistenzmuster nachahmen; und schließlich PBP-assoziierte Resistenz bei Pneumokokken,Haemophilus influenzae, undNeisseria spp. Manche dieser Resistenzmuster waren schon vor Einführung der 3GC in die Klinik vorhanden, haben aber deren Wirksamkeit erst in den letzten 5 Jahren bedroht. Sorgsamer Gebrauch der 3GC sollte das Ziel für dieses Jahrzehnt sein. 1. Die Anwendung in Monotherapie sollte in adäquaten Dosen und Dosierungsintervallen erfolgen und nur bei Erregern, die ein niedriges Mutationspotential haben. 2. Für Erreger wieCitrobacter, Enterobacter, einige indolpositiv Proteus-Arten undPseudomonas aeruginosa sollte eine Kombinationstherapie routinemäßig eingesetzt werden, um das Auftreten resistenter Klone auf ein Minimum zu reduzieren. 3. Zurückhaltende Anwendung bei Hochrisikopatienten, um die Überwucherung durch Bakterien wie Vancomycin-resistente Enterokokken,Xanthomonas maltophilia und andere zu vermeiden. 4. Unter den 3GC sollten nur diejenigen Substanzen mit bewiesener Sicherheit, breiter klinischer Anwendbarkeit in allen Altersgruppen, akzeptablen pharmakokinetischen Eigenschaften und eindeutigem Potential zur Kosteneinsparung verwendet werden. 5. Bei prophylaktischer Anwendung (chirurgische Eingriffe, selektive Dekontamination) sollte mit Einzeldosis oder Kurzzeit-Schemata erfolgen, um im Krankenhausbereich die Anwendung von Breitspektrum-Antibiotika in Grenzen zu halten. Bei Befolgung dieser Empfehlungen und Anwendung guter Infektions-Kontroll-Programme werden die 3GC in diesem Jahrzehnt ihre bedeutende Rolle in der Chemotherapie mäßiggradiger bis schwerer Infektionen behalten. Die Ärzte müssen sich aber mehr Wissen über alternative Behandlungsmöglichkeiten aneignen, da die beschriebenen Resistenzen in der Krankenhausumgebung und beim einzelnen Patienten auftreten können.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jones, R. N. Antimicrobial activity, spectrum and pharmacokinetics of old and new orally administered cephems. Antimicrob. Newsltr. 5 (1988) 1–5.

    Google Scholar 

  2. Fu, K. P., Neu, H. C. Beta-lactamase stability of HR 756, a novel cephalosporin, compared to that of cefuroxime and cefoxitin. Antimicrob. Agents Chemother. 14 (1978) 322–326.

    PubMed  Google Scholar 

  3. Fuchs, P. C., Barry, A. L., Thornsberry, C., Jones, R. N., Gavan, T. L., Gerlach, E. H., Sommers, H. M. Cefotaxime:in vitro activity and tentative interpretive standards for disk susceptibility testing. Antimicrob. Agents Chemother. 18 (1980) 88–93.

    PubMed  Google Scholar 

  4. Heymes, R., Lutz, A., Schrinner, E. Experimental evaluation of HR756, a new cephalosporin derivative: preclinical study. Infection 5 (1977) 259–260.

    PubMed  Google Scholar 

  5. Jones, R. N., Thornsberry, C. Cefotaxime: a review ofin vitro antimicrobial properties and spectrum of activity. Rev. Infect. Dis. 4 (Suppl.) (1982) S300-S315.

    PubMed  Google Scholar 

  6. Legakis, N. J., Kafetzis, A., Papadotos, C. J., Papavassilious, J. T. Antibacterial activity of HR-756, cefoxitin and cefuroxime against multiply antibiotic-resistant strains ofEnterobacteriaceae andPseudomonas aeruginosa. Chemother. 26 (1980) 334–343.

    Google Scholar 

  7. Neu, H. C., Aswapokee, N., Aswapokee, P., Fu, K. P. HR756, a new cephalosporin active against gram-positive and gram-negative aerobic and anaerobic bacteria. Antimicrob. Agents Chemother. 15 (1979) 273–281.

    PubMed  Google Scholar 

  8. Richmond, M. H. β-lactamase stability of cefotaxime. J. Antimicrob. Chemother. 6 (Suppl. A) (1980) 13–17.

    PubMed  Google Scholar 

  9. Sosna, J. P., Murray, P. R., Medoff, G. Comparison of thein vitro activities of HR756 with cephalothin, cefoxitin, and cefamandole. Antimicrob. Agents Chemother. 14 (1978) 876–879.

    PubMed  Google Scholar 

  10. Wise, R., Rollason, T., Logan, M., Andrews, J. M., Beford, K. A. HR756, a highly active cephalosporin: comparison with cefazolin and carbenicillin. Antimicrob. Agents Chemother. 14 (1978) 807–811.

    PubMed  Google Scholar 

  11. Campoli-Richards, D. M., Todd, P. A. Cefmenoxime: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 34 (1987) 188–221.

    PubMed  Google Scholar 

  12. Fuchs, P. C., Jones, R. N., Thornsberry, C., Barry, A. L., Gerlach, E. H. Cefmenoxime (SCE-1365), a new cephalosporin:in vitro activity, comparison with other antimicrobial agents, beta-lactamase stability, and disk diffusion testing with tentative interpretive criteria. Antimicrob. Agents Chemother. 20 (1981) 747–759.

    PubMed  Google Scholar 

  13. Chow, A. W., Finegold, S. M. In vitro activity of ceftizoxime against anaerobic bacteria and comparison with other cephalosporins. J. Antimicrob. Chemother. 10 (Suppl. C) (1982) 45–50.

    PubMed  Google Scholar 

  14. Fu, K. P., Neu, H. C. Antibacterial activity of ceftizoxime, a β-lactamase-stable cephalosporin. Antimicrob. Agents Chemother. 17 (1980) 583–590.

    PubMed  Google Scholar 

  15. Jones, R. N., Barry, A. L., The Collaborative Antimicrobial Susceptibility Testing Group Ceftizoxime susceptibility testing against anaerobic bacteria: comparison of results from three NCCLS methods and quality control recommendations for the reference agar dilution procedure. Diag. Microbiol. Infect. Dis. 8 (1987) 87–94.

    Google Scholar 

  16. Kamimura, T., Matsumoto, Y., Okada, N., Mine, Y., Nishida, M., Goto, S., Kuwahara, S. Ceftizoxime (FK749), a new parenteral cephalosporin:in vitro andin vivo antibacterial activities. Antimicrob. Agents Chemother. 16 (1979) 540–548.

    PubMed  Google Scholar 

  17. Cleeland, R., Squires, E. Antimicrobial activity of ceftriaxone: a review. Am. J. Med. 77 (Suppl. 4C) (1984) 3–11.

    Google Scholar 

  18. Neu, H. C., Meropol, N. J., Fu, K. P. Antibacterial activity of ceftriaxone (Ro 13-9904), a β-lactamase-stable cephalosporin. Antimicrob. Agents Chemother. 19 (1981) 414–423.

    PubMed  Google Scholar 

  19. Jones, R. N., Barry, A. L., Thornsberry, C., Wilson, H. W. In vitro antimicrobial activity evaluation of cefodizime (HR221), a new semisynthetic cephalosporin. Antimicrob. Agents Chemother. 20 (1981) 760–768.

    PubMed  Google Scholar 

  20. Jones, R. N., Barry, A. L. Cefoperazone sodium: a review of thein vitro characteristics, antimicrobial spectrum, beta-lactamase stability and enzyme inhibition. Rev. Infect. Dis. 5 (Suppl.) (1983) S108-S126.

    PubMed  Google Scholar 

  21. Jones, R. N., Barry, A. L., Thornsberry, C., Gerlach, E. H., Fuchs, P. C., Gavan, T. L., Sommers, H. M. Ceftazidime, aPseudomonas-active cephalosporin:in vitro antimicrobial activity evaluation including recommendations for disc diffusion susceptibility tests. J. Antimicrob. Chemother. 8 (Suppl. B) (1981) 187–211.

    PubMed  Google Scholar 

  22. Matsubara, N., Minami, S., Muraoka, T., Saikawa, I., Mitsuhashi, S. In vitro antibacterial activity of cefoperazone (T-1551), a new semisynthetic cephalosporin. Antimicrob. Agents Chemother. 16 (1979) 731–735.

    PubMed  Google Scholar 

  23. Neu, H. C., Fu, K. P., Aswapokee, N., Aswapokee, P., Kung, K. Comparative activity and β-lactamase stability of cefoperazone, a piperazine cephalosporin. Antimicrob. Agents Chemother. 16 (1979) 150–157.

    PubMed  Google Scholar 

  24. O'Callaghan, C. H., Acred, P., Harper, P. B., Ryan, D. M., Kirby, S. M., Harding, S. M. GR 20263, a new broad-spectrum cephalosporin with antipseudomonal activity. Antimicrob. Agents Chemother. 18 (1980) 876–883.

    Google Scholar 

  25. Fu, K. P., Neu, H. C. The comparative β-lactamase resistance and inhibitory activity of 1-oxa cephalosporin, cefoxitin and cefotaxime. J. Antibiot. 32 (1979) 909–914.

    PubMed  Google Scholar 

  26. Jones, R. N., Fuchs, P. C., Sommers, H. M., Gavan, T. L., Barry, A. L., Gerlach, E. H. Moxalactam (LY127935), a new semisynthetic 1-oxa-β-lactam antibiotic with remarkable antimicrobial activity:in vitro comparison with cefamandole and tobramycin. Antimicrob. Agents Chemother. 17 (1980) 750–756.

    PubMed  Google Scholar 

  27. Neu, H. C., Aswapokee, N., Fu, K. P., Aswapokee, P. Antibacterial activity of a new 1-oxa cephalosporin compared with that of other β-lactam compounds. Antimicrob. Agents Chemother. 16 (1979) 141–149.

    PubMed  Google Scholar 

  28. Lipsky, J. J. Review, antibiotic-associated hypoprothrombinemia. J. Antimicrob. Chemother. 21 (1988) 281–300.

    PubMed  Google Scholar 

  29. O'Callaghan, C. H., Sykes, R. B., Griffith, A., Thornton, J. E. Cefuroxime, a new cephalosporin antibiotic: activityin vitro. Antimicrob. Agents Chemother. 9 (1976) 511–519.

    PubMed  Google Scholar 

  30. Minami, S., Yotsuji, A., Inoue, M., Mitasuhashi, S. Induction of β-lactamase by various β-lactam antibiotics inEnterobacter cloacae. Antimicrob. Agents Chemother. 18 (1980) 382–385.

    PubMed  Google Scholar 

  31. Papanicolaou, G. A., Medeiros, A. A., Jacoby, G. A. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and α-methoxy β-lactams in clinical isolates ofK. pneumoniae. Antimicrob. Agents Chemother. 34 (1991) 2200–2209.

    Google Scholar 

  32. Payne, D. J., Amyes, S. G. B. Transferable resistance to extended-spectrum β-lactams: a major threat or a minor inconvenience? J. Antimicrob. Chemother. 27 (1991) 255–261.

    PubMed  Google Scholar 

  33. Sanders, C. C., Sanders, W. E. Jr. Clinical importance of inducible β-lactamases in gram-negative bacteria. Eur. J. Clin. Microbiol. 6 (1987) 435–437.

    PubMed  Google Scholar 

  34. Jones, R. N., Erwin, M. E., Bale, M. New insights into the activity of third-generation cephalosporins against pneumonia-causing bacteria. Diagn. Microbiol. Infect. Dis. 15 (1992) 73–80.

    PubMed  Google Scholar 

  35. Stratton, C. W., Ratner, H., Johnston, P. E., Schaffner, W. Focused microbiologic surveillance by specific hospital unit as a sensitive means of defining antimicrobial resistance problems. Diagn. Microbiol. Infect. Dis. 15 (1992) 11S-18S.

    PubMed  Google Scholar 

  36. Jones, R. N. The current and future impact of antimicrobial resistance among nosocomial bacterial pathogens. Diagn. Microbiol. Infect. Dis 15 (1992) 3S-10S.

    PubMed  Google Scholar 

  37. Ballow, C. H., Schentag, J. J. Trends in antibiotic utilization and bacterial resistance: report of the National Nosocomial Resistance Surveillance Group. Diagn. Microbiol. Infect. Dis. 15 (1992) 37S-42S.

    PubMed  Google Scholar 

  38. Sirot, J., Chanal, C., Petit, A., Sirot, D., Labia, R., Gerbaud, G. Klebsiella pneumoniae and otherEnterobacteriaceae producing novel plasmid-mediated beta-lactamases markedly active against third generation cephalosporins: epidemiologic studies. Rev. Infect. Dis. 10 (1988) 850–859.

    PubMed  Google Scholar 

  39. Jorgensen, J. H. Detection of antimicrobial resistance inStreptococcus pneumoniae by use of standardized susceptibility testing methods and recently developed interpretive criteria. Clin. Microbiol. Newsltr. 13 (1994) 97–101.

    Google Scholar 

  40. National Committee for Clinical Laboratory Standards Approved Standard M7-A3. Standard methods for dilution antimicrobial susceptibility tests for bacteria which grow aerobically. NCCLS, Villanova, PA 1993.

    Google Scholar 

  41. National Committee for Clinical Laboratory Standards Approved Standard M11-A2. Standard reference agar dilution procedure for antimicrobial susceptibility testing of anaerobic bacteria. NCCLS, Villanova, PA 1993.

    Google Scholar 

  42. Eliopoulos, G. M., Reiszner, E., Willey, S. Effect of blood product medium supplements on the activity of cefotaxime and other cephalosporins againstEnterococcus faecalis. Diagn. Microbiol. Infect. Dis. 12 (1989) 149–150.

    PubMed  Google Scholar 

  43. Jones, R. N. Gram-positive superinfections following beta-lactam chemotherapy: the significance of theEnterococcus. Infection 13 (Suppl. 1) (1985) S81-S88.

    PubMed  Google Scholar 

  44. Garcia-Rodriguez, J. A., Garcia Sanchez, J. E., Munoz Bellido, J. L., Immaculada Garcia Garcia, M. Current status of bacterial resistance to third-generation cephalosporins. Diagn. Microbiol. Infect. Dis. 15 (1992) 67–72.

    PubMed  Google Scholar 

  45. Jones, R. N., Pfaller, M. A., Allen, S. D., Gerlach, E. H., Fuchs, P. C., Aldridge, K. E. Antimicrobial activity of cefpirome: an update compared to five third-generation cephalosporins against nearly 6,000 recent clinical isolates from five medical centers. Diagn. Microbiol. Infect. Dis. 14 (1991) 361–364.

    PubMed  Google Scholar 

  46. Baker, C. N., Thornsberry, C., Jones, R. N. In vitro antimicrobial activity of cefoperazone, cefotaxime, moxalactam (LY127935), azlocillin, mezlocillin, and other β-lactam antibiotics againstNeisseria gonorrhoeae andHaemophilus influenzae, including β-lactamase-producing strains. Antimicrob. Agents Chemother. 17 (1980) 757–761.

    PubMed  Google Scholar 

  47. Jones, R. N., Fuchs, P. C. Activity of cefepime (BMY-28142) and cefpirome (HR810) against gram-negative bacilli resistant to cefotaxime or ceftazidime. J. Antimicrob. Chemother. 23 (1989) 163–165.

    PubMed  Google Scholar 

  48. Jones, R. N., Thornsberry, C., Barry, A. L. In vitro evaluation of HR810, a new wide-spectrum aminothiazolyl α-methoxyimino cephalosporin. Antimicrob. Agents Chemother. 20 (1984) 409–412.

    Google Scholar 

  49. Murray, P. R., Cantrell, H. F., Lankford, R. B. Multicenter evaluation of thein vitro activity of piperacillin/tazobactam compared with 11 selected beta-lactam antibiotics and ciprofloxacin against more than 42,000 gram-positive and gram-negative bacteria. Diagn. Microbiol. Infect. Dis. 19 (1994) 111–120.

    PubMed  Google Scholar 

  50. Jones, R. N. The activity of cefotaxime and desacetylcefotaxime againstBacteroides species compared to 7-methoxycephems and other anti-anaerobe drugs. J. Antimicrob. Chemother. 14 (Suppl. B) (1984) 39–43.

    Google Scholar 

  51. Jones, R. N., Barry, A. L., Aldridge, K. E., Gerlach, E. H. Comparative antimicrobial activity of aminothiazolyl methoxyimino cephalosporins against anaerobic bacteria, including 100 cefoxitin-resistant isolates. Diagn. Microbiol. Infect. Dis. 8 (1987) 157–163.

    PubMed  Google Scholar 

  52. Jones, R. N., Barry, A. L., Packer, R. R. The activity of cefotaxime and desacetylcefotaxime alone and in combination against anaerobes and staphylococci. Diagn. Microbiol. Infect. Dis. 2 (Suppl.) (1984) 37S-46S.

    PubMed  Google Scholar 

  53. Chin, N. X., Neu, H. C. Cefotaxime and desacetylcefotaxime: an example of advantageous antimicrobial metabolism. Diagn. Microbiol. Infect. Dis. 2 (Suppl.) (1984) 21–31.

    Google Scholar 

  54. Jacobs, R. F., Kearns, G. L. Cefotaxime and desacetylcefotaxime in neonates and children: a review of microbiologic, pharmacokinetic, and clinical experience. Diagn. Microbiol. Infect. Dis. 12 (1989) 93–99.

    PubMed  Google Scholar 

  55. Jones, R. N. A review of cephalosporin metabolism: a lesson to be learned for future chemotherapy. Diagn. Microbiol. Infect. Dis. 12 (1989) 25–32.

    PubMed  Google Scholar 

  56. Jones, R. N., Barry, A. L. Activity of six contemporary antimicrobics against 96 isolates from purulent meningitis: the contribution of desacetylcefotaxime to antimicrobial potency. J. Antimicrob. Chemother. 19 (1987) 843–845.

    PubMed  Google Scholar 

  57. Jones, R. N., Barry, A. L., Thornsberry, C. Antimicrobial activity of desacetylcefotaxime alone and in combination with cefotaxime: evidence of synergy. Rev. Infect. Dis. 4 (Suppl.) (1982) S366-S373.

    PubMed  Google Scholar 

  58. Limbert, M., Seibert, G., Schrinner, E. Cooperation of cefotaxime and desacetylcefotaxime. Infection 10 (1982) 97–100.

    PubMed  Google Scholar 

  59. Neu, H. C. Antimicrobial activity of desacetylcefotaxime alone and in combination with cefotaxime. Rev. Infect. Dis. 4 (Suppl.) (1982) 374–378.

    Google Scholar 

  60. Quintiliani, R., Nightingale, C. H., Tilton, R. Comparative pharmacokinetics of cefotaxime and ceftizoxime and the role of desacetyl-cefotaxime in the antibacterial activity of cefotaxime. Diagn. Microbiol. Infect. Dis. 2 (Suppl.) (1984) 63S-70S.

    PubMed  Google Scholar 

  61. Stratton, C. W., Kernodle, D. S., Eades, S. C. Evaluation of cefotaxime alone and in combination with desacetylcefotaxime against strains ofStaphylococcus aureus that produce variants of staphylococcal beta-lactamase. Diagn. Microbiol. Infect. Dis. 12 (1989) 57–65.

    PubMed  Google Scholar 

  62. Coombes, J. D. Metabolism of cefotaxime in animals and humans. Rev. Infect. Dis. 4 (1982) S325-S332.

    PubMed  Google Scholar 

  63. Doluisio, J. T. Clinical pharmacokinetics of cefotaxime in patients with normal and reduced renal function. Rev. Infect. Dis. 4 (1982) S333-S345.

    PubMed  Google Scholar 

  64. Goodpasture, H. C., Gerlach, E. H., Jones, R. N., Peterie, J. D. Optimal cefotaxime dosing for gram-negative bacteremia: effective trough serum bactericidal titer and drug concentrations 8 and 12 h after 1- or 2-g infusions. Diagn. Microbiol. Infect. Dis. 12 (1989) 101–105.

    Google Scholar 

  65. Trenholme, G. M., Schmitt, B. A. S., Nelson, J. A., Gvazdinskas, L. C., Harrison, B. B., Parkhurst, G. W. Comparative study of three different dosing regimens of cefotaxime for treatment of gram-negative bacteria. Diagn. Microbiol. Infect. Dis. 12 (1989) 107–111.

    PubMed  Google Scholar 

  66. Jones, R. N., Barry, A. L. Antimicrobial activity of ceftriaxone, cefotaxime, desacetylcefotaxime, and cefotaxime-desacetylcefotaxime in the presence of human serum. Antimicrob. Agents Chemother. 31 (1987) 818–820.

    PubMed  Google Scholar 

  67. Reeves, J. H., Russell, G. M., Cade, J. F., McDonald, M. Comparison of ceftriaxone with cefotaxime in serious chest infections. Chest 96 (1989) 1292–1297.

    PubMed  Google Scholar 

  68. Guggenbichler, J. P., Kofler, J. Influence of third-generation cephalosporins on aerobic intestinal flora. J. Antimicrob. Chemother. 14 (Suppl. B) (1984) 67–70.

    Google Scholar 

  69. Young, J. P. W., Husson, J. M., Bruch, K., Blomer, R. J., Savopoulos, C. The evaluation of efficacy and safety of cefotaxime: a review of 2,500 cases. J. Antimicrob. Chemother. 6 (Suppl. A) (1980) 293–300.

    PubMed  Google Scholar 

  70. Shah, P. M. Antiinfective therapy in intensive care units. Infection 19 (1991) S316-S319.

    PubMed  Google Scholar 

  71. Cade, J. F., Presneill, J., Keighley, C., Sinickas, V. Efficacy of a low dose cefotaxime in serious chest infections. Chest 101 (1992) 1393–1398.

    PubMed  Google Scholar 

  72. Jones, R. N. Review of cefotaxime sodium for surgical prophylaxis: a model for the evolution toward single-dose or short-course cost-effective regimens. Diagn. Microbiol. Infect. Dis. 13 (1990) 317–327.

    PubMed  Google Scholar 

  73. Sader, H. S., Jones, R. N. Cefotaxime is extensively used for surgical prophylaxis. Am. J. Surg. 164 (Suppl. 4A) (1992) 28S-38S.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, R.N. The antimicrobial activity of cefotaxime: Comparative multinational hospital isolate surveys covering 15 years. Infection 22 (Suppl 3), S152–S160 (1994). https://doi.org/10.1007/BF01782700

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01782700

Keywords

Navigation